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We present an approach to simulating quantum computation based on a classical model that directly imitates
discrete quantum systems. Qubits are represented as harmonic functions in a two-dimensional vector space.
Multiplication of qubit representations of different frequencies results in exponential growth of the state space
similar to the tensor-product composition of qubit spaces in quantum mechanics. Individual qubits remain
accessible in a composite system, which is represented as a complex function of a single variable, though
entanglement imposes a demand on resources that scales exponentially with the number of entangled qubits.
We carry out a simulation of Shor’s algorithm and discuss a simpler implementation in this classical model.
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I. INTRODUCTION

Quantum computation promises exponential speedup over
classical computation for certain problems such as period
finding and quantum simulation. Traditional classical simu-
lation of a composite quantum system requires updating each
of the 2N amplitudes characterizing the state of N qubits,
according to a Hamiltonian made up of 2N�2N elements.
The exponential growth of the state space with N imposes a
severe burden on resources for this type of simulation. Find-
ing classes of quantum computations that can be simulated
efficiently is an active field of research �1�.

In quantum mechanics, the qubits that comprise a com-
posite system remain accessible, and it is through interac-
tions with individual and pairs of qubits that computation is
implemented. For example, a single-qubit transformation af-
fects all 2N computational basis states of an N-qubit system.
It therefore seems that one of the features of quantum sys-
tems that enables more efficient computing is the ability to
harness the degrees of freedom of a 2ND vector space by
interacting with only N qubits.

Here we present a classical model of discrete quantum
systems that is based on representing individual qubits and
transformations applied to them. This enables us to address
specific qubits in a composite system, the state of which is
represented as a complex function of a single variable, and
thereby directly replicate the steps in an algorithm as they
would be implemented in a quantum system. While the re-
sources required to carry out a computation exactly are com-
parable to other methods, this model may be compatible with
approximations that would enable simulating more qubits
than currently is feasible. Furthermore, the approach of
building a classical model based on imitating quantum sys-
tems could offer an opportunity to gain insight into the dif-
ference in computational power of classical and quantum ar-
chitectures.

II. REVIEW OF QUANTUM COMPUTATION

A qubit can be realized with any two-state quantum sys-
tem that can be prepared in a general superposition of basis
states of a two-dimensional �2D�, complex vector space. For
multiple uncoupled qubits, the state of the composite system

is given by the tensor product of the individual states, and
the number of computational basis states grows exponen-
tially with the number of qubits. For example, the state of an
N-qubit system, with each qubit in an equal superposition of
computational basis states �0� and �1�, is given by the state
vector,

��� = � 1
�2

	N

��0� + �1��1 � ��0� + �1��2 � ��0�

+ �1��3 � . . . � ��0� + �1��N

= � 1
�2

	N

��00 . . . 00� + �00 . . . 01�

+ �00 . . . 10� + . . . + �11 . . . 11�� . �1�

Application of a unitary operation to a qubit that is part of a
composite system, which constitutes a step in an algorithm,
affects all states in the superposition simultaneously, illus-
trating the massive parallelism inherent in quantum compu-
tation.

Any quantum algorithm can be approximated arbitrarily
closely using just single qubit operations and a generic two-
qubit interaction, such as the controlled-NOT �CNOT� gate �2�.
The effects of these operations can be visualized as rotations
and inversions of the 2N-dimensional quantum-computer
state vector. The state in Eq. �1�, constructed as a product of
individual qubit states, is a special case. Almost all of the
states the system can occupy in its vector space will be non-
separable, implying that entanglement is required for general
computation.

Qubits and operations on them are subject to perturbations
from the environment and experimental imperfections. In
general, it is believed that errors due to decoherence grow
exponentially with the number of qubits in a system �3�.
Realizable quantum computation relies on the ability to di-
minish the effects of these errors—quantum error correction
and fault-tolerant quantum computation exploit entanglement
and the discrete nature of quantum systems to make this
possible.

This brief introduction to the fundamental elements of
quantum computation emphasizes the role played by the
mathematical structure of the single- and multiple-qubit vec-
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tor spaces. Quantum systems require this mathematical de-
scription, and our classical model is developed according to
this description by building into it the same state-space struc-
ture. The result is a method of simulation and an architecture
that may offer insight into the fundamental advantages of
quantum systems for computing.

III. INDIVIDUAL QUBITS

For the representation of a qubit we use a harmonic func-
tion with frequency �. Orthogonal functions sin��t� and
cos��t� serve as convenient basis states and span a 2D vector
space. We assign these basis functions the role of the com-
putational basis states of a qubit,

�0� ⇔ sin��t� ,

�1� ⇔ cos��t� . �2�

Applying a general unitary transformation U to a qubit �,

��t� = � sin��t� + � cos��t� , �3�

requires isolating the coefficients � and �; each coefficient
can then be multiplied by the corresponding transformed ba-
sis function, yielding the transformed state:

U���t�� = �U�sin��t�� + �U�cos��t�� . �4�

Orthogonality of the basis functions makes it straightforward
to isolate the coefficients by taking the inner product of the
corresponding function with ��t�:

� =
�

�



0

2�/�

sin��t����t��dt�,

� =
�

�



0

2�/�

cos��t����t��dt�. �5�

A general transformation is illustrated in Fig. 1�a�.
The modulus squared of the coefficient, or amplitude, of a

basis function gives the corresponding “measurement prob-
ability.” The function representing a qubit can be replaced
with one or the other basis function according to these prob-
abilities in order to represent the measurement process. The
ability to determine both measurement probabilities for a
given state eliminates the need to introduce and carry along
normalization coefficients—the relative probabilities can be
determined at the time of measurement.

IV. COMPOSITE SYSTEMS

A. 2ND vector space

This model can be extended to composite systems by us-
ing a different frequency for the basis functions for each
two-state system, creating a new 2D vector space for each
qubit. The mapping of quantum states to functions for com-
posite systems becomes

�0�n ⇔ sin��nt� ,

�1�n ⇔ cos��nt�, n = 0,1, . . . ,N , �6�

where n refers to the nth qubit and N is the total number in
the system.

If N single-qubit functions in equal superpositions are
multiplied, the result is a linear combination of 2N different
products,

�N�t� = �sin��1t� + cos��1t���sin��2t�

+ cos��2t�� . . . �sin��Nt� + cos��Nt��

= �sin��1t�sin��2t� . . . sin��Nt��

+ �sin��1t�sin��2t� . . . cos��Nt�� + . . .

+ �cos��1t�cos��2t� . . . cos��Nt�� . �7�

This is analogous to the tensor-product state for a composite
quantum system in Eq. �1�, with the mapping

�b1b2b3 . . . bN� ⇔ h1��1t�h2��2t�h3��3t� . . . hN��Nt�

� HN,j�t� . �8�

Here, bn is the binary value representing the state of the nth
qubit of a quantum system, hn is the basis function �sine or
cosine� representing the nth qubit in our model, and HN,j�t� is
the jth of the 2N combinations of products of hn.

The functions HN�t� that naturally arise when representing
composite systems look like N-qubit computational basis
states, and we would like to determine whether they too span
a state space that grows exponentially with qubit number.
This will be the case if all of the 2N functions are orthogonal.
It is easy to see by expanding the products of harmonic func-
tions in terms of sum and difference frequencies that, for
N qubits, the HN�t� are comprised of 2N−1 Fourier fre-
quencies �l=�n=1

N 	l,n�n, where 	l,n is 1 or −1. The �l
are all multiples of a fundamental frequency given by
the greatest common divisor of the qubit frequencies,
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FIG. 1. Schematic showing a linear transformation on single and
multiqubit states. �a� For a single qubit, orthogonality of the basis
functions enables isolation of the coefficients, which can then be
multiplied by the transformed basis functions. �b� For a composite
system, the generator G�n��x , t� enables the functional form of
F�n��t� to be transferred to a different variable. This procedure is
analogous to addressing a qubit in a quantum system.
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�fund=gcd��1 ,�2 , . . . ,�N� �4�. The orthogonality of the in-
dividual Fourier components can be shown to lead to or-
thogonality of the HN�t� for few qubits; the three-qubit case
is demonstrated in the Appendix.

1. Orthogonality of the HN(t)

To demonstrate orthogonality in the general case when the
2N−1 Fourier frequencies are unique, we consider the inner
product between two N-qubit functions HN,j�t�
=hj,1��1t� . . .hj,N��Nt� and HN,k�t�=hk,1��1t� . . .hk,N��Nt�,

HN,j�t� · HN,k�t� 
 

0

�/�fund

�hj,1��1t�hk,1��1t��

��hj,2��2t�hk,2��2t�� . . .

��hj,N��Nt�hk,N��Nt��dt , �9�

where factors for a given qubit have been grouped together
�5�. Each product hj,n��nt�hk,n��nt� can be written as a func-
tion of frequency 2�n, as either 1

2sin�2�nt� or
1
2 �1�cos�2�nt��. The integrand in Eq. �9� can then be seen
to consist of three types of terms. First, there will always be
a term that is a product of a function for each qubit,
h1�2�1t� . . .hN�2�Nt�. This can be written as a sum of Fourier
components with frequencies that are twice those of the
HN�t� and are, therefore, also multiples of �fund. Because
integration of a harmonic function over an integral multiple
of its period yields zero, this term’s contribution to the inner
product HN,j�t� ·HN,k�t� vanishes.

Second, there can be terms that only include
factors for some qubits, such as
h1�2�1t� . . .hn−1�2�n−1t�hn+1�2�n+1t� . . .hN�2�Nt�, which
arises when hj,n=hk,n. The Fourier frequencies for these
terms are also multiples of �fund—the fundamental fre-
quency is the greatest common divisor of the set of all qubit
frequencies, and necessarily divides any subset of them.
These terms therefore also vanish when integrated over an
interval of 2� /�fund.

Finally, the integrand in Eq. �9� can have a term of unity
�times 1 /2N�. This only occurs when all qubit functions are
the same for HN,j�t� and HN,k�t�, i.e., HN,j�t�=HN,k�t�.

2. Redundant frequencies

This argument is only valid if all of the Fourier frequen-
cies �l are unique. If there are at least two combinations of
qubit frequencies that give the same Fourier frequency, we
can write �n=1

N 	n,l�n=�n=1
N 	n,m�n, for �l=�m. Terms that

enter this equation with the same sign for each Fourier fre-
quency cancel, and the remaining terms give �a+�b+ . . .
=��+��+. . ., where the frequencies have been arranged so
that all signs are positive. When considering all inner prod-
ucts HN,j�t� ·HN,k�t�, all possible combinations of harmonic
factors in the integrand in Eq. �9� will arise; for some inner
product, there will be a term in the integrand like
h�2�at�h�2�bt� . . .h�2��t�h�2��t�. . ., with Fourier frequen-
cies that include �=2��a+�b+ . . .−��−��−. . .�=0. For the
case�s� in which this frequency is the argument of a cosine,
the constant term results in a nonzero integral, and the dif-
ferent HN�t� in this case are not orthogonal.

Therefore, for sets of qubit frequencies �n� that result in
2N−1 unique Fourier frequencies, the functions HN�t� that
naturally arise when representing composite systems are or-
thogonal and span a 2N-dimensional space. Unique Fourier
frequencies can be ensured by using a qubit-frequency defi-
nition such as �n=� /2n−1.

B. Linear operations

In quantum computation, single-qubit operations along
with a generic two-qubit interaction, such as a CNOT gate, are
universal. The general approach to implementing operations
in our model of composite quantum systems is the same as
for a single qubit—we need to isolate the factor multiplying
each basis function �sin��nt� or cos��nt�� for a particular
qubit. In this case, these factors will be expressions involving
other qubit basis functions. Once isolated, they can be mul-
tiplied by the transformed basis functions and these recom-
bined to generate the transformed composite function.

Consider a general �N�t�, similar to Eq. �7� but with ar-
bitrary coefficients for the HN�t�. We can write �N as a sum
of two parts, one with terms that include cos��nt� and one
with terms that include sin��nt�:

�N�t� = � �
k=1

2N−1

akHk,N
�n� �t�	cos��nt� + � �

k=1

2N−1

bkHk,N
�n� �t�	sin��nt�

= Fc
�n��t�cos��nt� + Fs

�n��t�sin��nt� . �10�

The Hk,N
�n� �t� are products of harmonic functions,

h1��1t�h2��2t� . . . hn−1��n−1t�hn+1��n+1t� . . . hN��Nt� ,

where h is cosine or sine, and ak and bk are coefficients for
the cos��nt� and sin��nt� terms. Fc

�n��t� and Fs
�n��t� are the

functions that we need to be able to isolate to apply a linear
transformation to qubit n; determining these functions can be
considered to be “addressing qubit n.”

For small N, a procedure similar to the one for a single
qubit can be adapted. Multiplication of �N by the relevant
basis function for the qubit leads to a different spectrum for
terms containing that basis function. These different frequen-
cies could be selected from the terms containing the orthogo-
nal basis function, enabling the qubit to be addressed. As the
qubit number grows, however, the number and density of
frequencies grow dramatically, making this process unfea-
sible.

A more general procedure can be used which determines
Fc

�n��Fs
�n�� exactly using the orthogonality of the HN�t�. An

inner product can be imposed between �N and a projector
that forces all of the terms with one basis function for qubit
n to vanish while preserving the others. The construction of
the projector for a given system is straightforward.

A linear combination of all of the HN�t� for a system of N
qubits can be generated by putting each qubit into an equal
superposition of basis functions as in Eq. �7�. We define a
similar function, the generator for qubit n, as the product of
equal superpositions of computational basis states for all qu-
bits in the system except qubit n:
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GN
�n��t� = �sin��1t� + cos��1t���sin��2t�

+ cos��2t�� . . . �sin��n−1t� + cos��n−1t���sin��n+1t�

+ cos��n+1t�� . . . �sin��Nt� + cos��Nt�� . �11�

If this is multiplied by cos��nt��sin��nt��, the resulting func-
tion’s inner product with �N�t� gives the sum of the ampli-
tudes of the terms in Fc

�n��t��Fs
�n��t��, but the functional form

is lost. We can salvage the functional dependence by trans-
ferring it to a second variable introduced to exactly replicate
the dependence on t:

GN
�n��x,t� = �sin��1t�sin��1x� + cos��1t�cos��1x��

��sin��2t�sin��2x�

+ cos��2t�cos��2x�� . . . �sin��n−1t�sin��n−1x�

+ cos��n−1t�cos��n−1x���sin��n+1t�sin��n+1x�

+ cos��n+1t�cos��n+1x�� . . . �sin��Nt�sin��Nx�

+ cos��Nt�cos��Nx��

= cos��1t − �1x�cos��2t − �2x� . . . cos��n−1t

− �n−1x�cos��n+1t − �n+1x� . . . cos��Nt − �Nx� .

�12�

When this generator is multiplied by cos��nt��sin��nt��, we
get the projector for Fc

�n��t��Fs
�n��t��:

Pc
�n��x,t� = cos��nt�GN

�n��x,t�

�Ps
�n��x,t� = sin��nt�GN

�n��x,t�� . �13�

Taking the inner product of �N�t� and Pc
�n��x , t��Ps

�n��x , t��,
integrated over t, gives us Fc

�n��x��Fs
�n��x��:

Fc
�n��x� = �2N�fund/��


0

�/�fund

Pc
�n��x,t��N�t�dt

�Fs
�n��x� = �2N�fund/��


0

�/�fund

Ps
�n��x,t��N�t�dt� . �14�

This is an exact technique for addressing a qubit that is part
of a composite system. The rest of the procedure for apply-
ing a transformation follows as in the single-qubit case and is
illustrated in Fig. 1�b�.

Iteration of this technique of addressing qubits allows for
multiple-qubit gates. For example, for a controlled-NOT gate
with qubit n1 as the control and n2 as the target, the gate
would begin with determination of Fc

�n1�, which would then
take on the role of the function � for determining Fc

�n2� and
Fs

�n2�. Fc
�n1� would be reconstructed after inverting the basis

functions for n2, giving Fc
�n2��t�sin��2t�+Fs

�n2��t�cos��2t�. Fi-
nally, the transformed state would be generated as
�Fc

�n2��t�sin��2t�+Fs
�n2��t�cos��nt��cos��1t�+Fs

�n1��t�sin��1t�.
Gates involving more than two qubits can be implemented
by further iteration.

The measurement probability for a basis function is deter-
mined by �0

�/�fundF�n���t� ·F�n��t�dt �6�. Due to the orthogonal-
ity of the HN�t�, all cross terms in the inner product vanish
and the result is the sum of the moduli squared of the ampli-

tudes of all of the terms containing the corresponding basis
function.

C. Scaling of required resources

The state of a general composite system can be repre-
sented as

���1,�2, . . . ,�Ne
����Ne+1����Ne+2� . . . , �15�

where � represents an individual, unentangled qubit, and �
characterizes Ne entangled qubits. While unentangled qubits
can be stored and processed individually and with little over-
head, the resources required to exactly represent entangled
qubits scale exponentially with Ne �7�. The qubit frequencies
and the maximum Fourier frequency can be kept finite, but
the fundamental frequency decreases at least exponentially
with number. The interval over which � needs to be defined
is given by the integration interval required for addressing a
qubit. In Eq. �14�, the integration limit of � /�fund yields
exact values for the F�n�; coupled with the necessary reso-
lution imposed by the highest Fourier frequency, on order of
�max /�fund points are required to define �.

We can consider the impact on addressing a qubit—both
for a unitary transformation and for measurement—of simply
truncating all of the functions that arise in a calculation. For
unitary transformations, we determine the accuracy of
Fc

�n��� , t� and Fs
�n��� , t�, the functions determined by integrat-

ing Eq. �14� to � rather than to � /�fund, by comparing
Fc

�n��� , t�cos��nt�+Fs
�n��� , t�sin��nt� to ��t�. We define a pa-

rameter �n���� to represent the error in F�n��� , t�:

�n���� = 

0

� ��̃�x� −
1

N�����
0

�

Pc
�n��x,t��̃�t�dt�cos��nx�

+ �

0

�

Ps
�n��x,t��̃�t�dt�sin��nx��	2

dx , �16�

where �̃ is � normalized over the interval 0 to �, and N���
is the normalization constant for Fc

�n��� , t�cos��nt�
+Fs

�n��� , t�sin��nt� over the same interval.
In Fig. 2�a� we plot ��� for the state ��t�

=�n=1
Ne cos��nt�+�n=1

Ne sin��nt�, with �n=� /2n−1 and Ne=5
through 9. We evaluate  for the case of addressing the first
qubit. The curves show that determination of Fc

�n� and Fs
�n�,

which is exact for an integration limit of � /�fund, abruptly
becomes less precise as the integration interval is reduced.
Any calculation involving many gates will likely require a
value for  on the steep part of the curve, imposing an inte-
gration interval that scales exponentially with Ne.

To assess the effect of truncation on measurement prob-
abilities, we truncate the integrals used to determine Fc

�n� and
Fs

�n� as above, and then integrate the square of each. We look
at the ratio of the truncated probability to measure sine ver-
sus cosine as a function of integration time:
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r�n���� = 

0

� �

0

�

Ps
�n��x,t���t�dt�2

dx�

0

� �

0

�

Pc
�n��x,t�

���t�dt�2

dx . �17�

This ratio is plotted in Fig. 2�b� for the same state used
above, for which the actual ratio is one. The graph shows
that reaching the actual ratio of Ps to Pc also scales exponen-
tially with Ne. However, precise values for measurement
probabilities are often not needed and useful qualitative in-
formation can be obtained for integration intervals that are
shorter than � /�fund. For instance, for this example the
curves indicate that for integration limits beyond � / �4�fund�,
the ratio r is about 0.25, of the same order as the actual
value.

V. SIMULATION EXAMPLE: FACTORING

A. Quantum Fourier transform and Shor’s algorithm

The most celebrated quantum algorithm is Shor’s method
of finding the prime factors of a number N. The problem of
factorization can be related to the problem of determining the
period p of the function f�x�=ax�mod N�, for an integer a
that is co-prime with N; if p is even, either �ap/2+1� or
�ap/2−1� will have a common factor with N �8�. Shor’s algo-
rithm relies on application of the quantum Fourier transform
�QFT� to f�x� to efficiently determine the period.

The qubits involved in implementing this algorithm are
divided into two registers, the states of which are treated as
integers according to the states of the associated qubits. The
first step in the procedure is to prepare the first register in a
superposition of all computational basis states,

�
x=0

2N1−1

�x� ,

by applying a Hadamard transform to each of the N1 qubits
in the register �9�. A gate U applied to both registers pro-
duces the entangled state

�
x=0

2N1−1

�x� � �ax�mod N�� . �18�

If the second register is measured, it collapses to
�ax0�mod N�� for some x0. The first register ends up in a
superposition of all states �x�� for which ax��mod N�
=ax0�mod N�, leaving the system in the state

��x0� + �x0 + p� + �x0 + 2p� + . . .� � �ax0�mod N�� . �19�

Application of the QFT to the first register imposes interfer-
ence that results in a superposition of states �x̃� that are close
to integral multiples of the inverse period, x̃� x̃�=��2N1 / p�,
for integer �. Measurement yields an integer close to one of
the x̃�, and after several iterations the period p can be deter-
mined.

The minimum number of qubits required for each register
is N1=log2 N2 and N2=log2 N. This ensures that the second
register is large enough to represent p, which satisfies p
�N, and that the first register is large enough to give a
unique value for p from the QFT �see Ref. �8��. We apply our
model to the factorization of N=21 using a=2, the first in-
teger co-prime with 21. This requires 14 qubits, nine for the
first register and five for the second; the algorithm for our
example is illustrated in Fig. 3. The qubits are labeled 1
through 14, with the convention that qubit 1 �14� is the most
�least� significant qubit for the first �second� register. Qubit n
is represented using the frequency �n=� /2n−1, and the func-
tion � representing the state of the system is defined with a
resolution of 1 /� over an interval of 2� /�fund=2��2nmax−1�
�10�. In Fig. 4 we show the function representing the state of
the system at various stages in the calculation, as denoted by
the dashed lines in Fig. 3�a�.

We implement U by generating the output state, shown in
Fig. 4�b�, by summing all functions representing
�x��ax�mod N�� over x=0 to x=214−1 �11�. From here, we
measure qubits 10 through 14 by comparing Fs

�n�� ·Fs
�n� to

Fc
�n�� ·Fc

�n� and applying the rule that the outcome of a mea-
surement is the state with the higher measurement probabil-

δ(
1)

(b)(a)

τ (units of 2π/ω)
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FIG. 2. �Color online� �a� Semi-logarithmic plot of error  versus integration time � when addressing qubit n=1 for the state discussed
in the text. The equal spacing between the steep parts of the curves indicates an exponential scaling of integration interval in order to avoid
significant errors. �b� Plot of r versus integration time �, for the same state and addressing the same qubit. For both plots, curves from left
to right correspond to Ne=5, 6, 7, 8, and 9 qubits, and each curve extends to � /�fund for the corresponding Ne.
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ity, or is chosen at random if the probabilities are equal. This
leaves the second register in the state �10000�= �16�, and the
first register in a linear combination of all �x�� between 0 and
29−1 for which 2x��mod 21�=16; the function representing
the first register at this stage is shown in Fig. 4�c�. Qubits 10
through 14 are removed from the calculation and the QFT is
applied to the remaining nine qubits.

The results of applying the QFT and subsequent measure-
ment of qubits 1–9 are shown in Fig. 5�a�, which displays the
measurement probability for the state �x̃�. The peaks at mul-
tiples of 851

3 indicate a period of p=6 for the function
2x�mod 21�, which in turn yields either of the prime factors
of 21 from gcd�ap/2+1 ,N� and gcd�ap/2−1 ,N�. Figures
5�b�–5�d� zoom in on the probability distributions near dif-
ferent multiples of 851

3 . When ��851
3 is not an integer, the

probability is distributed among integers closest to the frac-
tional value, as in �b� and �c�.

B. Simplifications in a classical model

There is a dramatic simplification to the factoring algo-
rithm when using a classical model for simulation. The need
for the QFT stems from the fact that, in a quantum system,
measurement of the state in Eq. �19� results in one of the
states in the superposition, with no opportunity to learn the
others. Repetition of the algorithm to that point likely results
in a different x0, preventing the period from being learned in
successive iterations. In a classical system, the state in Eq.
�19� can be measured as many times as necessary to deter-
mine the period p. If we apply this simplified scheme to the
state � in Fig. 4�c�, we find equal probability for any x�
satisfying 2x��mod 21�=16; the first eight peaks are shown in
Fig. 5�e�.

In addition to avoiding all of the gates required for the
QFT, no imaginary numbers are required, and most impor-
tantly, we save on qubits. The first register, whose size for
Shor’s algorithm is dictated by the QFT stage, in this case
only needs enough qubits to represent p, and p�N. This
provides a savings on order of log2 N qubits compared to the
quantum case. Applying this simplified factoring algorithm
to N=21 would require only 10 qubits, five for each register.

VI. CONCLUSION

We have presented a classical, qubit-based model of dis-
crete quantum systems that offers a framework for simulat-
ing quantum computations by providing access to individual
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qubits and their interactions. The dimension of the state
space for a composite system grows exponentially with qubit
number, and individual qubits continue to be accessible. Ap-
plication to Shor’s algorithm highlights the features of the
model in action. The resources required for implementation
scale exponentially with the number of entangled qubits, yet
it is possible to save on qubits in a classical model.

APPENDIX: FOURIER DECOMPOSITION OF HN(t)

The HN�t� can be Fourier decomposed by expanding the
products of harmonics hn in terms of sum and difference
frequencies. Here we explicitly show the decomposition for
the case of three qubits. The eight functions H3,j=1. . .8�t� can
be expanded as

cos��1t�cos��2t�cos��3t� =
1

4
�cos���1 + �2 + �3�t� + cos���1 + �2 − �3�t� + cos���1 − �2 + �3�t� + cos���1 − �2 − �3�t�� ,

cos��1t�cos��2t�sin��3t� =
1

4
�sin���1 + �2 + �3�t� − sin���1 + �2 − �3�t� + sin���1 − �2 + �3�t� − sin���1 − �2 − �3�t�� ,

cos��1t�sin��2t�cos��3t� =
1

4
�sin���1 + �2 + �3�t� + sin���1 + �2 − �3�t� − sin���1 − �2 + �3�t� − sin���1 − �2 − �3�t�� ,

cos��1t�sin��2t�sin��3t� =
1

4
�− cos���1 + �2 + �3�t� + cos���1 + �2 − �3�t� + cos���1 − �2 + �3�t� − cos���1 − �2 − �3�t�� ,

sin��1t�cos��2t�cos��3t� =
1

4
�sin���1 + �2 + �3�t� + sin���1 + �2 − �3�t� + sin���1 − �2 + �3�t� + sin���1 − �2 − �3�t�� ,

sin��1t�cos��2t�sin��3t� =
1

4
�− cos���1 + �2 + �3�t� + cos���1 + �2 − �3�t� − cos���1 − �2 + �3�t� + cos���1 − �2 − �3�t�� ,

sin��1t�sin��2t�cos��3t� =
1

4
�− cos���1 + �2 + �3�t� − cos���1 + �2 − �3�t� + cos���1 − �2 + �3�t� + cos���1 − �2 − �3�t�� ,

sin��1t�sin��2t�sin��3t� =
1

4
�− sin���1 + �2 + �3�t� + sin���1 + �2 − �3�t� + sin���1 − �2 + �3�t� − sin���1 − �2 − �3�t�� .

�A1�

We introduce a more compact notation to represent the eight
Fourier components:

�1,0,0,0,0,0,0,0� �
1

4
cos���1 + �2 + �3�t�

�0,1,0,0,0,0,0,0� �
1

4
cos���1 + �2 − �3�t�

�0,0,1,0,0,0,0,0� �
1

4
cos���1 − �2 + �3�t�

�0,0,0,1,0,0,0,0� �
1

4
cos���1 − �2 − �3�t�

�0,0,0,0,1,0,0,0� �
1

4
sin���1 + �2 + �3�t�

�0,0,0,0,0,1,0,0� �
1

4
sin���1 + �2 − �3�t�

�0,0,0,0,0,0,1,0� �
1

4
sin���1 − �2 + �3�t�

�0,0,0,0,0,0,0,1� �
1

4
sin���1 − �2 − �3�t� . �A2�

For all of these terms, �1a� · �1b�=ab�� /16�fund�, where �1a�
corresponds to the Fourier component represented by the
row vector with a one in the ath place and zeros everywhere
else.
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The functions H3�t� written with this vector notation be-
come

cos��1t�cos��2t�cos��3t� = �1,1,1,1,0,0,0,0� ,

cos��1t�cos��2t�sin��3t� = �0,0,0,0,1,− 1,1,− 1� ,

cos��1t�sin��2t�cos��3t� = �0,0,0,0,1,1,− 1,− 1� ,

cos��1t�sin��2t�sin��3t� = �− 1,1,1,− 1,0,0,0,0� ,

sin��1t�cos��2t�cos��3t� = �0,0,0,0,1,1,1,1� ,

sin��1t�cos��2t�sin��3t� = �− 1,1,− 1,1,0,0,0,0� ,

sin��1t�sin��2t�cos��3t� = �− 1,− 1,1,1,0,0,0,0� ,

sin��1t�sin��2t�sin��3t� = �0,0,0,0,− 1,1,1,− 1� .

From this it can be seen that all of the H3�t� are orthogonal.
For example,

cos��1t�cos��2t�cos��3t� · cos��1t�sin��2t�sin��3t�

= �1,1,1,1,0,0,0,0� · �− 1,1,1,− 1,0,0,0,0�

= − 1 + 1 + 1 − 1 = 0. �A3�

In this case and for small numbers of qubits, all of the dif-
ferent inner products can be verified to be zero, and
HN,j ·HN,j = �� /4�fund�.

We can also see that not all of the functions are orthogo-
nal if there is redundancy in the Fourier frequencies. If, for
instance, �1+�2−�3=�1−�2+�3, then the second and third
vectors in Eq. �A2� are identical �as are the sixth and sev-
enth�. In this case, the H3�t� can only be represented by six
orthogonal vectors, not eight. Then,

cos��1t�cos��2t�cos��3t� · cos��1t�sin��2t�sin��3t�

= �1,2,1,0,0,0� · �− 1,2,− 1,0,0,0�

= − 1 + 4 − 1 = 2. �A4�
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