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Abstract—The International Bureau of Weights and 
Measures (BIPM) urrently computes the systematic uncertainties 
between Coordinated Universal Time (UTC) and the UTC(k), its 
realizations by participating labs k, using an algorithm that does 
not take into account the effects of the clock model in the 
computation of UTC.   We present an algorithm that computes 
the systematic uncertainty for UTC-UTC(k) as the uncertainty of 
an optimal comparison between UTC(k) and all the other UTC 
realizations. The weights to be assigned to the links between lab k 
and each other lab are determined from a matrix calculation that 
incorporates the correlations between the links, and assures that 
the sum of the weights is unity via a Lagrange multiplier.  We 
speculate that an iterative approach may be sufficient to allow 
for the effect of the uncertainties of each lab in the determination 
of the uncertainties of the other labs. 

NOTE: This differs from the published version in that equation 
A-15 is revised. However, the author believes that the Lagrangian 
multiplier algorithm does not fully incorporate the proposed 
concept.  Rather, the covariances are better incorporated using a 
matrix approach similar to what was applied in Appendix I of his 
paper “Investigating a Null Tests of the Einstein Equivalence 
Principle with clocks at Different Solar Gravitational Potentials”, 
in the same IFCS-2016 proceedings.  
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I.   INTRODUCTION 

An essential requirement for metrological traceability to a 
standard, such as UTC, is that the uncertainty of a comparison 
with the standard be known, or at least estimated. It is 
conventional to lump together as “Type A” all statistical 
uncertainties, which are those that can be reduced by more 
measurements of the same qualitative kind.  Systematic 
uncertainties, which cannot in general be reduced by a larger 
quantity of measurements, are of Type B.   In the last decade, 
Lewandowski, Matsakis, Panfilo, and Tavella (LMPT) 
published a series of papers proposing an algorithm to compute 
the statistical and the systematic uncertainties of UTC-UTC(k) 
[1-3].  In addition, G. Petit derived a simple matrix-formulation 
that would facilitate the computations [4; see also 5].  The 
LMPT algorithm took into consideration the fact that 
deterministic contributions to UTC, such as leap second 
insertions and the frequency-steering to the primary frequency 
standards, made no contribution to the uncertainties. Rather, 
the uncertainty of any UTC-UTC(k) was determined by the 
uncertainties of the time-transfer links between laboratory k 
and all the other participating labs, as well as the weights that 

the BIPM actually used for the labs’ clocks in computing UTC, 
with full allowance being made for the correlations between 
the links used for UTC. 

LMPT did not take into account the fact the UTC is 
computed on the basis of individual clock deviations from a 
clock model based upon recent performance [6].  The effect is 
to make UTC equivalent to an integrated frequency scale, and 
the initial values of the UTC(k) can be considered  constraints 
that determine the constants of integration.  Ignoring the clock 
models is justified for statistical uncertainty calculations 
because the models are deterministic over any computation of 
UTC.  But to compute type B errors, consideration needs to be 
given to the fact that the model absorbs the systematic errors in 
the time-transfer links between the labs; these errors are in fact 
the calibration biases.  Since UTC is defined in terms of the 
individual UTC(k) (in the form UTC-UTC(k)), we propose that 
uk, the systematic uncertainties in UTC(k), be based upon an 
estimate of the systematic uncertainties in the time difference 
between lab k and the other labs, ignoring the laboratory 
weights but with full allowance for correlations between the 
links. Here optimality is defined with respect to the systematic 
uncertainties in the UTC’(k) = UTC-UTC(k), as computed by 
the BIPM.  (If the biases in all UTC links were known to be 
exactly zero, then so would be each UTC’(k), along with its 
uncertainty.) 

Because the systematic uncertainties and actual link biases 
are not in any way used in the computation of UTC, use of the 
LMPT algorithm can lead to the nonsensical result that raising 
one lab’s systematic uncertainty too much can greatly raise the 
systematic uncertainties of every other laboratory [7].   The 
reason this does not happen when the statistical uncertainties of 
the link to a lab are large is because the statistical noise of the 
links contributes to the noise evaluation of its attached clocks. 
This is because a noisier link will have larger scatter in its 
deviations from the clock model, and that will result in a lower 
weight being assigned to the laboratory’s clocks.  Perhaps a 
better way to phrase this is that the UTC algorithm is designed 
to minimize the statistical uncertainty of UTC-UTC(k).  If 
correctly tuned, the weights will be adjusted to optimize any 
configuration, and the addition of even the noisiest of links and 
clocks will improve UTC to some degree, as would be 
reflected in reduced Type A uncertainties. 

II. THE TOPOLOGY AND THE CORRELATIONS 

If all time transfer links were uncorrelated and followed a 
normal distribution, the optimal comparison of UTC(k) with 
the average of all other laboratories would weigh each 



difference with UTC(n) by the inverse of the link’s systematic 
squared uncertainty Ukn. If UB,k is defined to be the square of 
UTC’(k)’s systematic uncertainty uk, and Ukn the systematic 
squared uncertainty of UTC(k)-UTC(n), then in this theoretical 
case we have 

              UB,k = 1/[Σ(1/ Ukn )],                               (1) 

and the uncertainty itself is uk =  √UB,k . 

An example of a network that might fulfill these 
assumptions is one in which all links are to a common lab 
(pivot), such as the one currently used to compute UTC( Figure 
1); however in this case many of the links to the pivot lab are 
not independently calibrated.  We consider some simpler 
topological examples before providing a more general 
approach in section VI. 

 
Figure 1.  Topology of the links currently used in UTC 
generation. The color signifies the techniques employed, and 
the lettering indicates the acronyms of the laboratories 
participating in UTC.  Most important is that the individual 
labs are linked through a common pivot lab (PTB) 

 

As a notational matter, let us use the abbreviation PPP for 
all links whose calibrations are site-based.  A site-based 
calibration depends only on independent calibrations of the 
systems at each lab; this would be the case for Precise Point 
Positioning if every lab’s GNSS system were absolutely 
calibrated or calibrated consistently with travelling receivers. A 
site-based system also follows strict closure, by which we 
mean that the signed sum of the three links between three labs 
is identically zero, even when not calibrated [8].   For 
laboratories whose UTC representations can be written X, Y, 
and Z, their closure sum is (X-Y)+(Y-Z)+(Z-X), where the 
quantity in each parenthesis represents a direct timing 
measurement via a UTC-contributing time-transfer link or set 
of links.  We shall use TW to refer to links that are 
independently calibrated, as is usually the case for Two Way 
Satellite Time Transfer (TWSTT) and will likely be the case 
for “self-calibrated” fiber-optic links in the near future.  The 
closure sums of such links are not in general zero unless 
separately and perfectly calibrated. 

In order to discuss the correlations, let us use the topology 
of Figure 2. 

Figure 2.  Types of links used for UTC generation 

With the topology and properties of the Figure 2 links, the 
squared uncertainties of the links between Lab X and the other 
three labs (pivot P, X, and Y) would be correlated as follows: 

 Ulink,X,P = PX + PP                                                        (2)                                       

U link,XY = U link,XP + TYP     = PX + PP  + TYP                 (3) 

 U link,XZ = PX + PZ                                   (4) 

where PX    is the site-based squared uncertainty of the PPP 
system at Lab X, while TYP is the link-based squared 
uncertainty of the TW system between labs P and Y. 

 Relations (2) and (4) hold because the PPP systems at the 
labs in question are independently calibrated.  In the case of 
relation (4), the PPP data from the pivot lab cancel out because 
they appear in both links with opposite sign.  Relation 3 holds 
because the calibration of the links between the TW link are 
considered uncorrelated with any other link, especially PPP 
ones. 

III. AN ALL-PPP NETWORK 

In an all-PPP network of N labs and N-1 links, the closure 
sums of links between any three labs are strictly 0, and the 
pivot lab holds no special role.  Therefore the link between any 
two labs is given as in equations (2) and (4). It can be 
immediately realized that no amount of averaging of the links 
between lab k and the other labs will reduce the contribution 
from a bias in the system at lab k, whose squared uncertainty is 
PK, because PK is common-mode.  If in addition each system’s 
uncertainties were assumed equal to √P, averaging would 
reduce the net contribution of the squared uncertainties of the 
other laboratories by √ (N-1), so that the squared uncertainty of 
lab k would be given by` 

 UB,k = Pk + (Px )/(N-1)  = N*P/(N-1)                                           (5)       

and the uncertainty uk =  √ UB,k                                                 (6)      

IV.  AN ALL-TW, SINGLE-PIVOT NETWORK 
   The link uncertainties of an all-PPP network equal the root-
sum-square (RSS) of the uncertainties of the two labs 
involved; the uncertainty of a TW link is <= to the RSS of the 
two labs’ uncertainties. We consider two cases herein, neither 
of which is necessarily valid.  In Case 1, the lab uncertainties 
are considered to be completely correlated with, and 
incorporated in, the link uncertainties.   In Case II, the lab 
uncertainties are uncorrelated with the link uncertainties. In a 
single-pivot network based only on TW links, even if all time 
transfer links have identical squared uncertainties T, the pivot 



lab would be in a unique situation.  Its links with the N-1 other 
labs would have equal weight, and in Case I its squared 
uncertainty would be given by 

 
UB,Pivot = T/(N-1) ;      uPivot =√ UB,Pivot                      (7)     

 

  In Case II, the non-pivot uncertainties would be relevant, and 
we assume all link uncertainties equal T: 
 

UB,Pivot = (T+UB,Non-pivot)/(N-1) ;      uPivot =√ UB,Pivot               (8)     
 
For every non-pivot lab however, we must realize that the 
correlation between the links extends only from lab k to the 
pivot; the connection between the pivot and lab N is  
uncorrelated with the connection between the pivot and lab M, 
so that the correlated uncertainty between lab k and any other 
lab is just the uncertainty between k and the pivot.  This 
component of the systematic uncertainty component will not 
average down, while the extra uncertainty going from the 
pivot to a third lab just adds noise.  To illustrate this, Figure 3 
invokes a simplified example of a three-lab all-TW network, 
for which we wish to compute the weights that minimize the 
systematic uncertainty for lab k. 
 

 
Figure 3. A three-lab network with two TW links. 
 
  In this simplified geometry the Case 1 uncertainties of the 
links from lab k to the other two labs are given as follows: 

Ulink,kP = TkP                                                                     (8) 

Ulink,kX = TkP  +TPX                                                          (9) 

If the pivot lab P is assigned weight w, and Lab X weight (1-w) 

UB,k = w*TkP + (1-w)*(TkP +TPX)   = TkP + (1-w)*TPX             (10)       

To minimize  UB,k, we require w=1; the link to lab X receives 
no weight while the link from lab k to the pivot receives unity 
weight.  It follows that the optimal weighting for the 
uncertainty of lab k assigns the link to the pivot lab unity 
weight, and zero weight to the links from k to the other labs.  
Therefore, for Case I the systematic uncertainty of any non-
pivot lab k can be written: 

 
UB,non-Pivot = T ;      unon-pivot =√ T                                      (11)     

 
  For Case II, with N-1 links, equation 10 would be written: 

 

UB,k = w*(T+UB,Pivot )+ (1-w)*(T+(T +UB,k)/(N-2))              (12)      

                       
To minimize UB,k, it is easily shown that we again require 
w=1, and the squared  uncertainty of a non-pivot lab becomes 

 
UB,k = T*(N-1)/(N-3)                                                    (13) 

V. A TWO-LAB NETWORK 
  A hypothetical network with only two labs, and one link, 
presents a counter-intuitive solution because the systematic 
uncertainties of the labs are equal, independently of how many 
clocks each lab might have.  The reason is that, though one lab 
may have many more clocks and a correspondingly higher 
weight in UTC, the mean value of each lab’s corrected UTC 
representation (UTC’) is 0.  Of course, the uncertainty 
experienced by a user is the RSS of the systematic and the 
statistical uncertainties, therefore an out-of-network user 
might be well advised to extract UTC by linking to the lab 
with the highest weight. 

 
VI. THE GENERALIZATION OF CASE 1* 

 
 
  *See the note below the abstract. 
 
For every lab k, we are interested in determining the weight 
vector, of N-1 components wn, that would minimize the 
uncertainty of S, the weighted sum of the UTC’(n): 
 

S=Σ wn (UTC’(k)-UTC’(n) )                           (14) 
 
S has zero mean because each UTC’(n) has zero mean, and its 
squared uncertainty <S2> is given by 
 

 <(Σ wn (UTC’(k)-UTC’(n) )* (Σ wn (UTC’(k)-UTC’(n) )> 
(15) 

The problem reduces to minimizing Σ wm wn Uk,m,n            (16) 
where Uk,m,n is the correlation between the systematic errors of 
the set of UTC links that connects lab k with lab m and the set 
that connects lab k with lab n .  The minimization is subject to 
the constraint  

       1 =  Σ wm                                                           (17)  
 
The set of weights that produce a minimum uncertainty for 
each lab k can be easily found using least squares with a 
Lagrange multiplier, and this is shown in Appendix I.  Using 
this more general formula, the results for the three special 
cases given above can be confirmed. 
 

VII. THE GENERALIZATION OF CASE 2 
 
  In Case 2, the laboratory uncertainties are implicit in the 
expansions of equations (14) and (15).  They would contribute 
to the diagonal elements of equation (16), for which m=n, but 
they would not contribute to the off-diagonal terms if the 
laboratory uncertainties or their chains of links to lab k are 
uncorrelated at any stage.   We suspect that an iterative 
approach may converge.  In such a strategy, the lab 
uncertainties would at first be ignored and the minimization 
problem solved as with Case 1.   The resulting type B 
uncertainties would then be included in equation (16) for a 



second minimization.  The process would be repeated until a 
desired convergence level is, hopefully, attained.   

VIII. CONCLUSIONS AND A COMMENT 
  The systematic uncertainties in the evaluation of UTC-
UTC(k) may be determinable through an optimal differencing 
of the UTC(k) with every other available official realization.  
The specific means to carry this out may an iterative method 
of determining the weight assigned to each lab via a least-
squares solution under the constraint that the sum of the 
weights are unity; this is a matter for further work. 
 
 We comment that a slightly different definition of the Type B 
uncertainties in UTC-UTC(k) would greatly simplify the 
mathematics.  This would be to define them as those whose 
RSS’s equal the Type B uncertainties of the links used to 
generate UTC, after taking all link correlations into account. 
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Appendix I – Determining the Uncertainties to lab k with a Lagrange Multiplier 

 
0 = ∂/ ∂ wn [ (Σ wm wn Uk,m,n ])- λ (1- Σwm )]                                                           (A-1) 

                                       where the summations are over the N-1 labs excluding lab 
  
                                   We absorb the factor of 2 in λ, so  

   0 =  Σ wm Uk,m,n+ λ                                                                                       (A-2) 
 and      1 =  Σ wm                                                                                                                                                         (A-3) 
where  λ  = Lagrange Multiplier                                                                                                                     (A-4) 

                                    
                                    Let W by a weight-vector, defined with the N-1 labs and λ   as follows: 

Wm = wm for m<N ; WN = λ                                                                                                                      (A-5)  
          i.e. W = (w1   , w2 , w3 , …. wN-1 ,  λ)                                                                                                (A-6) 

                                    
                                    Let V be an NxN matrix, defined with the N-1 other labs and λ as follows: 

Vmn =  Uk,mn for m,n = 1 to N-1 labs                                                                                                  (A-7) 
       VmN =  1 for m<N                                                                                                                                            (A-8) 
       VN,m = 1 for n<N                                                                                                                                    (A-9) 

VNN  = 0                                                                                                                                              (A-10) 
      i.e.  V = (Uk,1,1   Uk,1,2  Uk,1,3 ….     Uk,1,N-1       1                                                                   (A-11a) 

              Uk,2,1   Uk,2,2  Uk,2,3 ….     U k,2,N-1      1                                                                  (A-11b) 
                    …                                                                                                                          (A-11c) 

              Uk,N-1,1  Uk,N-1,2 Uk,N-1,3 ….Uk,N-1,N-1  1                                                                    (A-11d) 
                1           1         1         …       1    0)                                                                  (A-11e) 

 
Let  F = (0,  0, 0, … 0,   1)                                                                                                                              (A-12) 

 
Then equations A-2 and A-3 can be expressed:     F = V * W                                  (A-13) 

  
So that W = V-1 * F                                                                                                   (A-14) 

 
   Finally, use the weights in W to compute UB,k = Σ  wm  Uk,m,n                                  (A-15) 

 
and the systematic uncertainty,  uk =  √UB,k                                                                                           (A-16) 


