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ABSTRACT

The steady-state electromagnetic field response from
nonuniform layered models of the earth's crust are used
to compute the transient response due to LORAN C pulse
excitations. Using a full wave approach, the electro-
magnetic fields are expressed completely in terms of a
continuous spectrum of vertically polarized waves (the
radiation term) and a discrete set of vertically polarized
surface waves (the waveguide modes of the structure). Thus
the scattered radiation fields and surface waves due to
incident plane waves are computed. The full wave solutions
satisfy the reciprocity relationships in electromagnetic
theory.

These investigations are relevant to problems of navi-
gation since it is possible to facilitate the derivation
of the LORAN grid corrections due to ground effects if the
propagation delays of the LORAN pulses can be related to
the LORAN pulse distortions., Thus in this work analytical
expressions are derived for the propagation delays due to
ground effects (compared with the smooth perfectly con-
ducting case) and the dependence of the distortions of
the received signal upon the ground parameters along the
propagation path is determined for different excitations,

This approach could also be used to determine the

effects of a nonuniform stratified model of the ifonosphere
upon satellite navigation signals.

1. INTRODUCTION

A full wave solution for the steady state electromagnetic fields due
to a magnetic line source over a nonuniform stratified model of the
earth is the basis for the present investigation [1],{2]. The complete
expansion of the electromagnetic fields consists of the radiation term
(continuous spectrum of vertically polarized waves) and the surface
waves (discrete set of verticallv polarized waves).Since these solutions
are shown to satisfy the reciprocity relationships In electromagnetic
theory the scattered radiation ficlds and surface waves due to incident
plane waves are considered in detail.

The scattered electromagnetic fields were computed earlier for
exp(iwt) excitations for various nonuniform models of the earth s crust
to determine the feasibility of using a radio wave tor geophysics’
prospecting [3]. It is seen from the formal solution of the problem that
considerable physical insight could be gained by determining the zlectro-
magnetic response to tramsient excitations of nonuniform stratified
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structures [4]. Thus in this work the transient electromagnetic fields
due to LORAN C pulse excitations over the earth's surface are evaluated
using both analytic methods and Fast Fourier transform techniques.

The principal motivations for this work are twofold.

(a) To determine the distortions an electromagnetic pulse undergoes

when it is scattered by a nonuniform stratified model of the earth's
crust.

(b) To determine whether the propagation delays of the LORAN pulses
due to ground effects can be related to the LORAN pulse distortions.

Thus analytical expressions are derived for the propagation delays
due to ground effects (compared with the smooth perfectly conducting
case). In addition, the dependence of the distortions of the received
signals upon ground parameters along the propagation path is determined
for different excitations. This approach could also be used to predict
the effects of a nonuniform stratified model of the ionosphere upon
satellite navigation signals.

2. FORMULATION OF THE PROBLEM

In this work the scattering of vertically polarized waves only is
considered in detail. Thus, the excitations are assumed to be due to a
z—directed magnetic line source I (see Yig. 1), where

I, = KS(x = x,)8(y - yo)a, (2.1)

The dual problem, scattering of horizontally polarized waves, can be

analyzed in a similar manner by considering excitations due to
z-directed electric line sources.

The dielectric coefficient of the overburden (o > y > -h) is
g1 = aoer(s) (2.,2a)

where . Z . = . ) :
Lr(s) ex + a/s ex + EI(mo/s) (2.2b)

in which £r and the conductivity ¢ = €, W, are positive real numbers

independent of frequency, s = a + iw is the complex frequency, W, is the
radio wave carrier frequency in radians/sec. and £y 1s the permittivity

of free space. The permeability of the overburden is assumed to be that

of free space Ho (non-magnetic material), thus the overburden intrinsic

. . - N

i ce 1s = £ .

impedan Ny (uo/ 1)

It is convenient to characterize the substratum by a surface
impedance

ZS = V@O/EZ (2.3)
where

152(w0)/el(w0)( >> 1

and €9 is the substratum dielectric coefficient.
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The overburden depth is
hix) = hO + Ox ~L < x < L (2.4)

where h, is the average overburden depth, & = tan A is the slope of the
overburden-substratum interface.

Explicit solutions for the electromagnetic fields scattered by an
overburden of nonuniform depth (2.4) have been derived for steady state
(exp(iwt)) excitations. Since the problem is two dimensicnal, both the
incident and the scattered fields are vertically polarized.

The wave vectors for free space and the overburden are expressed as:

ko,l = BE% + U.O,1 5& (2.5a)
in which the longitudinal wave number £ is positive real for the
radiation term; 0 < B < k, for the propagating waves, £ > k, for
evanescent waves, and

/
k = Wl © 2.
0,1 v po&o,l (2.5b)
Thus the transverse wave number is .
- 2 _ n2Ni2
uo,l (ko,l £) (2.5¢)

The square roots in (2.5) are chosen such that Lm(k l) < 0 and
Im(u l) < 0 at the carrier frequency. The wave parameterq U1 and £

are also expressed in terms of the complex cosine and sine of "the
angles 60 and Gl Thus

uo,l = ko,l cos eo,l = ko,l Co,l’b = ko,l sin eo,l=ko,l So,l (2.6)

Hence for Q < B < L 60 ig the angle between the wave vector Eg and the
y axis. The transverse wave impedance is
(B/wao = Zyyy > 0
Z(u) = B/we =4

Blwe, = Z)y=h <y < 0 (2.7)

1
For 0 » y > =h, the basis function for the radiation term is
Y(u,y) = {exp[iul(y+h)] + ROl(u)'exp[—iul(y+h)J}W(u,—h)/TZI(u) (2.8a)
where

Y(u,-h) = exp(-iu )T, (WT, (w)/ (27 ZO(U))i[l*Rol(u)Rl(u)J (2.8b)

The reflection coefficients looking in the negative y direction at
the air-overburden interface and the overburden-substratum interface are
respectively

Ro<u) = (Ko~zl)/(KO+z1) (2.9a)

Rl(u) = R21(u)exp(—21ulh) = [(Kl—ZS)/(Kl+ZS)]'exp(—Ziulh) (2.9b)
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in which

zl(u) = Kl(ZS + 1Kl tan ulh)/(iZS tan ulh + Kl) (2.9c)

K =qy Jwe 2.9d

0,1 0,1 0,1 (2.9d)
and the two-medium Fresnel reflection and transmission coefficients for
the air-overburden interface and the overburden-substratum interface
are given by

Rol(u)

Tlo(u)

(K - K)/(K + K;),RZl(u) = (K -2/ (R +2) (2.10a)

1
1+ Rlo(u) =1 - Rol(u)’ TZl(u) =1 + R

21(u) (2.10b)
When the receiver and the source are far from the nonuniform region,
(kop >> 1 and koo, > 1) (see Fig. 1), the forward scattered radiation

field is [3],

L .
Hj(x,y) = (27T/kop)2 exp(—ikop) exp(iﬂ/A)P(uf,ul) (2.11a)
where the radiation pattern is given by
£ 1 z £ i
P(u, P u ,u (u,u 2.11b
(W,u) =P (u )p q p’q ) ( )
fi_ fl 24 o i i T
Po(u ,u ) = H (l Sl 1 zs)lZl(u )Tlo(u )T21(u )Tlo(u )/4WV€r (2.11c)
Hi = -a /[2nz (ui)]l/2 (2.114d)
m o o *
and
. 1
. = 1. . - pl 5 s
a_ s K exp(lﬂ/4)(wLOB /kopo) exp( 1k0p0) (2.11e)

In (2.11c) the incident and scattered waves are in the directions of

_E;' and.Ef respectively and Hé is the magnitude of the incident

magnetic field, H,, at the origin,excited by the magnetic line source

of intensity K (2.1) (Fig. 2). The normalized surface impedance is

z, = Zs/nl. Furthermore .

I (uf,ul) = "?lﬂz-J koh'(x)exp[i(Bf—Bl)x—i(u§+ ui)h] (2.12)
51751 il

- £ £ JPURE AR 25 |
pgl[Rol(u )R21(u Yexp ( 21ulh)]

OO

q* [R (ul)RZI(ul)exp(—Ziu;h)fq_i}dx

where
h'(x) = dh(x)/dx (2.13)

478




The infinite geometric series expansions of the terms
l/[l—ROlRZl exp(—Ziulh)] used in the above derivations are valid only
for |Ry1Ro1 exp(—Ziulh)[ < 1. The coefficient Ip (uf,ul) can be
integrated by parts [4]. After neglecting the term identified with the
edge effect in the theory of scattering by rough surfaces [5],[6], the

general expression for the coefficient I (uf,ul) for

P»d
h = ho + &x,(-L < x < L), is found to be ’

e Ry @hr, @HIPTHR @hry )97
I (u,u")

P»>qg - f _ i
(2p l)Cl+ (2q l)Cl

.exp[-i{(mel)U§ + (2qml)ui}ho]2koL

— f 3 = 3 .
'sincL(B —Bl)— {(prl)ui + (Zq—l)ui}é} (2.14)
where
sinc (v) = sin(v)/v (2.,15)
The terms corresponding to p # 1 are missing from the geometrical
optical solution [3].

For the special case § =0,h=constant (parallel stratified earth) the
terms 1/[1 - Ro1Ry exp(-2iujh)| are not functions of x. In this case it
is not necessary Lo expand these factors in a geometric series to
facilitate the integration. Thus, for & = 0, the radiation pattern is

P(uf,ui)zPo(uf,ui)Lll(uf,ui)-ﬂj[l—Rol(uf)RZl(uf)exp(—Zquh)J)

i SN B ,
l/[l—Rol(u )R21<u Yexp( Zlulh)J (2.16)
Substitute (2.,13) for Ill into (2.16) to get
P(uf,ul)
P (uf,ul)exp[—i(uf+ul)h 12k L sinc L(Bfmﬁl)
__o 1 1770 0 _ .17
ceiretyi-r | whHr . whyexp(-2iuth )] (1o - bz, @hexp2iud)] -
11 ol 21 1o ¢ ol 21 1
e ek v o =] i =g .
For the special case k, kl and SO BO (2.17)
£ i, 1,42 2. .42, i 2142 i, .
Po(u ,u ) = llm(Cl 45)C1 /J(Ll+zs) = Hm L1 RZl/ (2.18)
thus
£ T CoNTE B :
Hz(x,y) = ”m(l/ZM kop> exp ( Lkou)z ROLClRl (2.19)
Equation (2.19) is the expression for diffuse scatlering in the
specular direction.
The back scattered radiation field HS at an angle 62 from the y axis
can be obtained from (2.11) by replacing & ty -5~ = ~ko sin OD.
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The modal equation for the surface wave is

1-R .R
Ei-= E{fj%L*L =0 (2.20a)
o 1 "ol
Thus
RolRl = RolRZl exp(—Zlulh) = 1 (2.20L)

It is convenient to express (2.20b) as

Yofr g 8rko Y58 % E:r_‘]&o
i tan ulh = (- - " )/ (1 + " " ) (2.20c)
1 1 1 1

The modal equation (2.20c) is solved numerically for the nth root,
uon(x), using the Richmond process [7]. The corresponding values for
Bn and uy  are obtained by (2.5).

The solution for the scattered radiation field excited by an
incident surface wave is greatly simplified by replacing Bn(x) by
Bp = By(0). The subscript n = 0 denotes the dominant surface wave mode.

The surface wave excited by an incident plane wave is [3].
£ o s i — i
Hz(x,y) = exp( 1an)W(un,y)W(un,o)(2ﬂ/w&O)P(u,u ) (2.21)

in which the surface wave basis functions are

rexp(-iugy) , y > 0
W(un,y) = W(un,O)‘

'exp[(—iuly)+ R exp(iuoy)]/(l+Rol), y < 0 (2.22a)

and 1

u Z (K2-X?)  iu h(K*-K?)
[¥Cu ,0))%= 24 /2 [1-(2)2e {1 4-Sp 00 — 2 K11< o
o on’ o 1n R_(K3+22) K

11 (2.22b)

The surface wave basis functions are both explicit functions of y and
implicit functions of x through h(x). Thus in (2.21) Y(u_,y) is
evaluated at the field point (x,y) and Y(u.,0) is evaluated at the
origin. Furthermore 1

— i — i
P(u, = P s I =1,2,3... 2.23
- (u,u ? O(U u )pq pq P ( )
where i i, o dm i i —

Po(u,u ) = Hm(l—SlSlnsz)TZl(u )Tlo(u )T21(u)/4W/E;_ (2.24a)

On neglecting the edge effect

i ip-lp o —qq-1
L W - [Ry; WHR L (H)]T T[-R,, (W)]
pq- 7 2p-1)ct + 20-1)T

. i -
exp[—l (2p—l)ul + (2q—l)uln hO]ZkOL
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'sinc[L[Eh—Bl)—{(Zpul)ui‘+(2q—l)ﬁin}5]] p,q=1,2,3... (2.24b)
and H; is given by (2.11d). Equation (2.25d) is wvalid for
i i ! , — L
|Rol(u )RZI(U )exp(~21ulho)| < 1 and |R21(u)exp( 21ulho)| < 1.

(2.25e)
For the special case 6=0, the closed form solution for H, is

i (x,y) = exp (-18_x)¥ (u_,y)¥(u_,0) (21/we_)P_(u_,u’) (2.26)

exp[—i(ui+§1)hoj2koL sinc L(E;—Bi)

i , i i , 1 - —
(Cl+ ln)[l Rol(u )RZI(u )exp(—Zlulho)][1+R2l(u)exp(v21ulnho)]
The WKB solutions for the surface waves excited by the magnetic line

source are given by [3],
X

Hﬁ(x,y) = - %—W(un,yo)w(un,y)EXP(mi J Bndx) (2.27a)

X
o]

in which the basis function ¥Y(u_,y ) is evaluated at the source point
n’’o
(% sy, ) (2.22).

The steady state response H7(w) is derived for time harmonic excita-
tions. For arbitrary time varying excitations the instantaneous
expression for the magnetic line source is

3&(¥;c) = Re fS(t)S(x—xo)d(y—yo)§; (2.27h)

The excitation function f (t) is taken to be complex for convenience.
The Fourier transform of fs(t) is

F(w) = F[fs(t)j = J fs(t)exp(—iwt)dt (2.28)

*
and F(w) = F(-w)" only when fs(t) is real. The asterisk denotes the
complex conjugate. Thus on applying lFourier transform techniques and
noting that Hz(w) = H:(—w), the transient response can be given by

= =)

h(r,t) = Re F_l[Hz(m)'F(w)] = RE{E%-JHZ(M)F(m)exp(iwt)dw

-

= Re hs(¥;t) (2.29)

481




3. FAST FOURIER TRANSFORM (FFT)

The fast Fourier transform (FFT) algorithm [8] is used to perform
the numerical integration required to evaluate either a Fourier trans-
form or an inverse Fourier transform. The number of samples used in
subroutine FFT is N = 2™ yhere m is an integer. For this choice of N the
FFT algorithm is most efficient [8]. Let the symbols k(k= 1,2...N) and
n=1,2...N denote the sample number in the time and frequency domains
respectively. The summations performed to evaluate the transform and
the inverse transform are respettively,

N

F(n) = %-kgl[fr(k) + 3£, (0 Jexp[-24m(a-1) (k-1)/N] -t (3.1a)
* 1 ¥ . * .

f (k) = ﬁ-ngl[Fr(n) + 1Fi(n)] exp[—21’n(n—l)(k—l)/N]-meax (3.1b)

Because the same subroutine is used to evaluate the transform F(n)
(3.1a) and the inverse transform f£(k) (3.1b), £7(k) (3.1b) is initially
eyaluated using the complex conjugate of the frequency domain samples
F (n) and f(k) is obtained by taking the complex conjugate of (3.1b).

The values of the N samples F(n) in the frequency domain are
obtained from N + 1 values of F(o + iw) taken at N + 1 points equally
spaced on the imaginary axis (w) from - wp,. to + w, ... Samples
n=1,2...N/2 correspond to F[(n-1)Aw] where Aw = 2w,/ N. The sample
n=N/2+4+1 is given by F(N/2 + 1) = [F(—iwmax) + F(iwg, )]/2. The
samples n = N/2 + 2, N/2 + 3...N correspond to F[(n-1-N)Aw]. Similarly,
in the time domain the numbering scheme is as follows:

f(k) = £[(k-1)At] , k= 1,...N, and £(1) = £(N1) = f(tmax).

The increments in frequency Aw and in time At between samples are
determined by the Shannon criteria [8] which for this case is

2 f a
N =20 = 17EELES (3.2a)
where max
2 f = NAf and t = NAt (3.2b)
max max

4, EXCITATION-LORAN-C PULSE

The excitation (2.27) used in this work is the Loran-C pulse. This
pulse can be represented as the real part of the sum of three damped
sinusoids [9].

f(t) = Re[fs(t)] (4.1a)
where 0 t < 0
fs(t) = 3
jél Aj exp(—th) t >0 (4.1b)
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in which

Al = i/2 Fl = ¢ + ) W= e
A2 =—i/4 F2 = c + iw2 Wy = W, + 2wp
A3 ==1/4 T3 = ¢ + in Wy = W - Zmp (4.1c)

where W, is the radian frequency of the carrier and w, is the radian
frequency of the envelope (the modulation frequency) and ¢ > 0 is the
damping coefficient.

For the Loran-C pulse excitation (4.1) f£(t) and its derivatives are
continuous. Furthermore, for the values

c = 25000 fp = mp/Zﬁ = 2500 Hz fO = wo/2W==100 k Hz (4.14d)

99% of the input power is between 90 to 110 k Hz. This property of the
Loran-C pulse considerably facilitates the numerical analysis since the
Fourier transform H(w) of the response h(t) can be regarded as band-
limited. The Fourier transform H(w) is

H(w) = F(w) Hz(w) (4.2)

where F(w) is the Fourier transform of fs(t) (4.1b) and H,(w) is the
transfer function, Section 2.

For the values of Aj and Tj given in (4.1c)

2

2iw
F(w) =
[i(wo)+c][{i(wmo)+c}2 + mp?-] (4.3)
and
) 4w;

F =

l (w)l [(w+wo)2+c2J[{c2+4mp2—(w+wo)2}2 " écz(w+mo)2J (4.4a)
Thus [F(w)l2 peaks at w = W and

]

[F(w) | = l/4[mpD(l + D3], b

maxy

2 4.4b
c/ "Up ( )

If D is fixed, increasing w (and c¢) decreases the magnitude of

[P ()|

The sum of the three damped sinusoids (4.1b) can be expressed as
follows:

max and the bandwidth of F(w) increases,

fs(t) = i exp(-ct) sin? upt exp(—iwot). (4.5a)
Thus
|f (t)‘ = exp(-ct)sin® w T (4.5b)
5 P
and
£(t) = Re fS(t) = exp(-ct) sin® wpt sin wt = 1fs(t)}sin wote
(4.5c)

483




Thus |fs(t)| is the envelope of f(t). It peaks at t = tp and vanishes at
t = t, where

i+

1 -1
t = = tan (1/D), t, = m/ o’ m=0, £1, £ 2.., (4.6a)

P P

Hence,
= 2

Ifs(tp)| = exp(wctp)/(l + D?) (4.6b)

The envelope of the input Loran C pulse Ifs(t)l is shown in Fig. 2
for £ = 3 x 107 H, fp = fo/30, f0/40, f0/50, and ¢ = 5f , 10f_, 15f
to illustrate the effects of changing the modulation frequency f_  and
the damping factor c. P

5. SCATTERED RADIATION FIELD

The steady state scattered radiation field in db Hdb as a function
of the scatter angle 6f ig

o
Hy = 20 log]HZ(x,y)/Hzl (5.1a)

where Hz(x,y) is given by (2.11a) and
H HZ(O 61) (5.1b)

for the case § = 0. (2.4). The plane wave at an angle of incidence pt
is assumed to be excited by a magnetic line source J (r,t), (2.27).

The dips and peaks in the response Hyp (as a function of Gf) are
primarily due to the minima and maxima of fsinc v[ (2.15) (except for
near grazing incidences)

£ i £ i _

v = kOL[SO 5 —{(2p—1)cl4-(2q—1)cl} /erﬁl = nm (5.2)

where the principal maximum of Oi corresponds to n = U. The minima for
of < eg and of > Gg correspond ton = -1,-2,-3...and n = 1,2,3...

respectively. The maxima for of < 95 and 6f > 6; correspond to
1 3 5 1

n=-%, -5, —5 ... and n = = 3 2 respectivel
22 T2 T2 2° 702 P e
For nondissipative overburdens Sg is real and
£ -1
6" = sin” (s)) (5.3a)
For dissipative overburdens Sg is complex and
-1 -
ef = Re[sin (si)] » gin | Re(Si), ep << €x (5.3b)
Using (2.11d), (2.1lle), and (2.7), it follows that
i b : _ - . _ 4
Hm(zw/kop) exp[1(n/4-k p)] iK exp(-dwt )/ (2n_ [pp 1) (5.4a)

in which

t, = (p + oo)/vO (5.4b)




and v is the velocity of light in free space. Thus, tO is the time
required for the signal to travel the distance p + Py (Fig. 1) in free
space. For convenience set K/(2n0[ppo]1) =1.

The computer program evaluates the normalized response hsN(t) given
by

b (£) = hs<t)/|fs<tp> H (w )| = h (t)/h (5.5)

where H (0w ) is the steady state response to exp(iwot) excitations

o]
(2.11a) for a specified reference case. Thus [hSN(t)]max = 1 for the
particular reference case considered.

For dissipative overburdens and when Z is a complex function of
frequency the transfer function H,(s) is not an analytic function of s.
In these cases it is convenient to express hs(t) as follows:

joo
bo(e) =2 [ 5w (o) B () LI [ -
s 2mi pyq “pq >’ Tpq‘® j=l[ j/(S + j)Jexp(st)ds

_..icxo

= hp (8) 4 by (t) (5.6a)

where
1 2
= E = .
Hy(e) = B Hpq(8) = Hyg(8) B (o) (5.6b)

and Hpq(s) is an individual term in the expression for H_(s). All the
singularities of Hpq(s) are contained in H%q(s) while ng(s) is an

analytic function of s, Furthermore

ioo
3
_ 1 Lo v (o)1) ~
hL(t) = o1 jél J 5% Hpq( Aj)Hpq(s)[Aj/(s + lj)]exp(st)ds
—jwo
= hE(t)exp(—imot) (5.6c)
joo
h (t) = _lT“ g J Z[Hl (s)—Hl (-T )]H2 (9|Aa./(s+],) |exp(st)ds
H 2mi j=1 ) pa" pg pPq 377 Pq ] y (5.6d)
_100 -

In (5.6) hL(t) is due to the residues of the poles of F(s) and hH(t) is
due to the contributions of the singularities of Hz(s).

2
If H  (s) in (5.6d) does not possess any singularities in the
vicinity of the poles of F(s), (Tj), {hH(t)| << |hL(t)l.
For nondissipative overburdens hH(t) = 0 and the envelope of h(t)
is given by ‘hE(t)l (5.6¢). For the general case hH(t) # 0 (dissipative

overburdens) and
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h(t) = Re hL(t) + Re hH(t) (5.7a)

Thus the envelope h_(t) of the total response is regarded as the
envelope of hL(t) superimposed on the function Re hH(t). Hence

hp(t) = Re h(t) * ]hE(t)] (5.7b)
The envelope (5.7b) is symmetric with respect to Re[hH(t)].

In view of the singularities of H (s), the functions hs(t)’ hL(t)
and (t) are evaluated by numerical methods. As a check on the
numerical values, hL(t), the major contribution to the response hs(t) is

also evaluated by analytical methods and hH(t) is evaluated directly
using (5.6) and indirectly from

h,(t) = h_(t) - h () (5.8)
An individual term thq(t) of hL(t), (5.6c) is approximately given by
thq(t) = fs(tg)qu(—Tl)(l—GP/T) (5.9a)
in which
h
o . _ 0 _ _rafN2 _ _(aiy2
tg = t-t_ v, [}2p l)JER (SO) + (2q l)/ER (So) ] (5.9b)
T=¢tan w_t , (5.9¢)
and P &
= [l—G (—iw )/G (—F )]/D (5.9d)

Thus the factor (1-G /T) in (5. 9a) represents the distortion of the
envelope of h (t)

6. SURFACE WAVES EXCITED BY INCIDENT PLANE WAVES AND WKB SOLUTIONS FOR
THE SURFACE WAVES
The steady state scattered surface wave in db, Hdb at x =L, y=20
as a function of the plane wave incident angle 61 is

&} -
Hy, = 20|log H (L,0)/H, | (6.1)

db
where Hz(L,0) is given by (2.21). The normalization coefficient is
B° = HO(Gi = l) in which H = H (L,0) for 8§ = 0 and 61 is the angle

zZm
at which H is maximum. The plane wave at an angle of 1nc1dence 6

assumed to be excited by a magnetic line source Jm(r t) (2.27).
Using (2.11d), (2.11le), and (2.7), it follows that

H;(Zﬂ/meo) = —-K(m VO/ZprO)lﬁ exp(iﬂ/4)exp(—iwt0) (6.2)




here L, =P /vo is the time required fpr the signal to travel the
distance p_ (Fig. 1) and K(mw \A /2w %% )2

The steady state WKB solutions for the surface waves given by (2.27)

are evaluated for an observation point at x = L, y = 0 and a line
source at X, = L, y = 0 and by setting the intensity of the line source

K= 2.

The response to transient excitations is obtained by following the
same procedures used to evaluate the scattered radiation fields (5.6).

7. ILLUSTRATIVE EXAMPLES

Unless otherwise specified the values of parameters used in
illustrative examples presented in this section are as follows:

L = 5000 meters A = -1 degrees ho = 100 meters
ER = 8 EI =0 LS = 0 ohms
£ = 3x10° £ = £ /40 ¢c=10¢f ob=gs® (7.1)
o p o P
and the number of terms of the series (2.11b) is taken to be 15,
(p-q < 6).

The response is normalized such that H (w )y in (5.16) is evaluated
for A = 0° and 8f = 61 for the scattered radlatlon field and Ol = OL

for the scattered surface wave.

The shape of the envelope depends strongly upon the incident and
observation angles 61 and 6%, The envelope of the iIndividual terms of
the field expansions closely resemble the shape of the 1nput Loran C
pulse except for values of 6f very near the minima of H (@ ). The
minima of H for different values of p and g do not occur for the
same values of of (unless 4 = Oo), and the envelope of the total field
is not necessarily distorted only when the envelope of an individual
term is distorted. The envelope of the response is usually distorted
(6f). 1In Fig. (3)
[h | ]h ] is plotted for 4 = -1°, e = .5 with ? = 44°, 450, 469,
and 470. Major distortion of the envelope occurs when of = 45°-46°. n

most strongly in the neighborhood of a minimum of Hd

this case Hll(ef) is a minimum when Gf = 44.6° and Hdb(O ) is minimum

when Gf = 469,
In Fig. (4) |hLNI = ‘hsN‘ is plotted for 4 = -1° with of - 46°. In an

earlier comparison of the full wave steady state solutions with one

derived using a geometrical optical approach it was pointed out that

there are n terms for which p+ g -1 =mn (n,p,q = 1,2,3...) in the full
wave series expansion (2.11b), and associated with these n terms there
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exists only one term in the corresponding geometrical optical solution
[3],[4]+ The envelopes of the individual terms h__ (5.21a) for
n=p+q-1<3 together with the sum of only these six terms are
also given in Fig. (4). The time of arrival of the n terms associated
with p + ¢ — 1 = n progressively increases as n increases. These n terms
of the series correspond to waves that are reflected at the overburden-
substrate interface n times before they emerge above the overburden.
This particular property of the full wave solution assures that the
reciprocity relationships in electromagnetic theory are satisfied.

The computed value of |hLN[ for p + g < 6 (15 terms of the series
2.11b) 1is approximately equal to the sum obtained by taking p + q < 4.
Notice that while the envelopes of the individual terms of the series
are not double humped, the total response |hLN| is very distorted. In
this case the minimum of Hdb(e ) (which occurs at 8% = 46°) is the
result of the destructive interference between the individual terms.

In Fig. (3) IhLN‘ = }hsNI and its significant terms are plotted for
A = —.45°, 8% = 57.9°, Due to the increased damping of the higher
order terms when € = 10, |hLN| is approximately equal to thNlll'
The individual terms of the total response for 0" near the Brewster
angle are illustrated in Fig. (6) for A = -1°, 61 = 70°, of = 71.19°
£y 4 o ,
(where H;,(0%) is minimum. Here [hLNqu << IhLN' for p + q > 2 since

both Ri and Rf and Rf are small.
0 0 o]

1 1 1
In Fig. (7) the envelopes of the scattered surface waves hLN and

hrnpg (P + @ < 4) are plotted for £, = 1x10° Hz, € = 5. A = 1°,
Gi = 38.32°. In this case Hll(el) is minimum for the value of 6%
chosen. The relative contributions of higher order terms increases as
the overburden skin depth increases.
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QUESTION AND ANSWER PERIOD

DR. REDER:

You have applied this to underground structure actually?
PROF. BAHAR:

This example here was for a non-uniform overburden. That
means the earth's crust's thickness is changing, but we are
now applying it also to the case where you simply have a

hill or a valley without any layers to it.

DR. REDER:

How deep does the wave go in? What is vour thickness?
PROF. BAHAR:

This is only 100 meters.

DR. REDER:

Is there any energy 100 meters down for Loran frequencies?
DR. BAHAR:

If vou have seen the cases where I said the higher conduc-
tivity of the earth is, in those cases we had practically
only one term, so the conductivity of the overburden is
large, as in many cases, and indeed there is only one term,
the dominant term, but, we have also examined the cases
where the overburden conductivity iz not large, in which
case the 100 meters would bhe of the order of a skin depth,
and then the high order terms arc appreciable in their
effect.

DR. REDER:
I do hope that vou two gecntlemen get together and maybe the

theory of Professor Bahar can beapplied to Mr. Roll's experi-
mental data and vice versa.,
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