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ABSTRACT

The OMEGA navigation system now has seven transmitting sites stra-
tegically located throughout the world., All transmissions are derived
from cesium-beam standards, and each station transmits time-multiplexed
coherent bursts at 10.2, 11 1/3, and 13.6 kHz. Thus, an observer at
some distant location has an opportunity to track the phase of three co-
herent precision transmissions rather than just a single frequency as is
usually the case (e.g., WWVB, Ft. Collins). It is shown that by using
the phase information received on all three frequencies, the observer
can compute a synthetic group delay referred to any arbitrary frequency
in the 10-14 kHz range. By coincidence, it works out that the group ve-
locity (and thus group delay) at 12.5 kHz is about the same for nominal
day and nighttime conditions. Thus, the group delay at this frequency
has a natural insensitivity to diurnal variations. This invariance to
diurnal shifts is demonstrated with actual OMEGA data.

In a monitoring application, it is suggested that there might be an
advantage in compensating for propagation lag with group delay rather
than the usual predicted phase delay. Most of the low-frequency diurnal
error is eliminated in the synthetically-formed group delay, leaving
only relatively high-frequency components to be filtered in the residual
error. This, of course, simplifies the filtering problem. It is shown
that complementary filter theory can be applied to advantage in this ap-
plication.

INTRODUCTION
The OMEGA navigation system now has seven transmitting sites stra-
tegically located throughout the world. When the eighth station

(Australia) commences operation, the system will be fully operational
with world-wide coverage [1]. 1In addition to its primary purpose as a
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navigation system, it also provides the world with a common precision
time/frequency reference system. All transmissions are derived from
cesium-beam standards, and each station transmits time-multiplexed co-
herent bursts at 10.2, 11-1/3, and 13.6 kHz. This makes OMEGA unique as
a time reference system, because the observer at a remote location has
an opportunity to track three coherent transmissions within a narrow
frequency range, rather than the usual single frequency (e.g., WWVB, Ft.
Collins). The availability of phase information on multiple frequencies
enables the observer to compensate for propagation variations on-line,
if he so chooses. For example, the well-~known diurnal shift is due to a
change in the effective height of the ionosphere from day to night. The
same mechanism that causes the velocity of propagation to change also
causes different phase shifts at different frequencies. So, one can re-
verse the reasoning and infer something about the change of velocity of
propagation from the measured phase shifts on two or more frequencies.

A number of on-line OMEGA compensation schemes have been proposed,
but it is not clear as yet which is to be preferred [2]. On-line com-
pensation (in contrast to prediction) is especially attractive in the
navigation application because it has the potential of mitigating unusu-
al situations, such as sudden ionospheric disturbances (SID), as well as
the usual diurnal shift. It is suggested here that some of these com-
pensation ideas might be applied to advantage in the precise time/fre-
quency application.

Before proceeding, a simple example should help put the precise
timing problem in perspective. Obviously, the observer at a remote lo-
cation would like to have the equivalent of an expensive cesium—beam
standard in the form of a simple radio receiver. Unfortunately, though,
the propagation delay is somewhat "rubbery'" and relatively large errors
can occur over short time periods. To illustrate this, consider track-
ing a 10 kHz single-frequency source. For long paths, a total phase
shift from day to night of one full cycle would not be unusual; and, if
this took place over a span of two hours, the apgarent frequency error
during this period would be about one part in 10° -- a totally monster-
ous error when dealing with precision systems. Obviously, if one leaves
the diurnal shift uncorrected, very long averaging times are needed for
precise work. The culprit, of course, is the '"rubberiness'" of the pro-
pagation medium. Would it not be nice to be able to "stiffen" the me-
dium someway? The remainder of this paper will be directed toward on-
line (in contrast to predictive) methods of accomplishing this.

VLF Wave Propagation

Wave propagation in the VLF range is usually explained in terms of
waveguide theory, with the earth's surface and the ionosphere forming
the waveguide boundaries. For simple waveguide modes, the phase and
group velocities vary with frequency as shown in Fig. 1 [3]. 1In the
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Fig. 2. Flat earth model.

OMEGA case, the waveguide height dimension is considerably greater than
the wavelength, so the lowest order mode is considerably above the cut-
off frequency, f.. Thus, the phase velocity is only slightly greater,
and the group velocity slightly less, than the free wave velocity. The
change in ionospheric height that occur from day to night (typically,
from 70 to 90 km) do, however, cause a shift in cutoff frequency that
results in changes in the phase and group velocities of the order of a
few tenths of a percent. The sketch of Fig. 2 shows a simplified "flat-
earth" model illustrating the transition from day to night. It should




be apparent that if the phase and group velocities change by equal
amounts in opposite directions, then the average of the group and phase
delays would be invariant from day to night. Compensation for the tran-
sit time from transmitter to receiver with a blend of phase of group
delays should then eliminate the diurnal variation. This method of
on-line compensation was first suggested by J. A, Pierce [4] and is now
known as composite OMEGA. Without going into all the details here, two
phase measurements on nearby frequencies are needed to accomplish the
desired compensation.

A number of variations on Pierce's original compensation scheme
have been proposed recently [5,6,9]. These have been necessary because
the original idea of an equal blend of phase and group delays did not
take into account the curvature of the earth as shown in Fig. 3. It can

DAY NIGHT

OMEGA STATION RECEIVER

Fig. 3. Curved earth model.

be seen that even though the phase and group velocities change in oppo-
site directions, the average delay is still not invariant because the
mean path length increases as the ionospheric height increases. This
suggests giving group delay more weight than phase delay in the blend-
ing, and this is borne out by recent investigations by Mactaggart [6].
Carrying this line of reasoning a bit further, there might exist a con-
dition where the increase in path length in going from day to night
would be exactly proportional to the increase in group velocity. This
is confirmed by theoretical curves of group velocity vs. frequency given
by both Hampton [7] and Watt [8] which are reproduced in Figs. 4 and 5.
Note that these plots indicate that the day and nighttime group veloci-
ties should be the same for a frequency somewhere in the 12.5 to 13.0
kHz range. This crossover phenomenon is unique with group velocity (in
contrast to phase velocity) and only occurs at one frequency. Quite by
coincidence, this crossover frequency occurs within the spectral range
of the OMEGA system. This has obvious implications in terms of elimi-
nating the diurnal shift. 1In principle, all one need do is observe the
envelope of a modulated wave at say 12.5 kHz and its transit delay
should be relatively invariant from day to night. This is easier said
than done, though.

There is very little direct experimental evidence supporting the
theoretical curves shown in Figs. 4 and 5. No doubt this is due to the
difficulty in making precise envelope time-of-arrival measurements in
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Fig. 5. Variation of group velocity with frequency (Watt [8]).

where o is frequency in radians/sec and B is the phase shift constant.
On the other hand, the group velocity is the speed at which the envelope
(modulation) appears to travel, and it is given by the inverse slope of
the B versus w curve, i.e.,

- dw

g dB (2)

Y

Now assume we have three phase delay measurements, Ty, T2, T3, cor-
responding to the three OMEGA frequencies, w], wp, w3. Each of these
time delays represents a ratio of total phase shift to frequency, i.e.,

Bld

Tl = E)l = = c/lB E Vd (3)
1 %1 %1'P™ Py

¢y

T, = — = etc, (4)
2 w
2
¢

T3 = —§-= ate. (5)
@3

where d is the distance from transmitter to receiver. It is tacitly as-
sumed from here on that lane ambiguities (whole number of wavelengths)
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for all three frequencies have been resolved. In effect, the three
phase measurements give us three points on the Bd vs. w curve as shown
in Fig. 6. Now assume that B8d can be approximated as a quadratic func-
tion of w over a reasonable range of w; i.e., let

gd = czwz + Cw + Cy (6)

Next, we will choose the coefficients Cp, C; and Cp such that Bd goes

through the measured ¢1, ¢2, ¢3 points as shown in Fig. 6. Thus, the
coefficients are determined by

2
CO + Clwl + Czwl (7

(8)

2
Co + Clm3 + C2m3 ¢3 (9)

Omitting the algebra, it is obvious that Egs. (7), (8), and (9) can be
solved explicitly for Cy, C1, and C2 in terms of the measurements ¢j,
$2, and $3.

Returning now to Eq. (6), the group delay can be found as

_ d(ed) _
= a0 2C2w + Cl




If the solutions for C; and Cop from Eqs. (7), (8), (9) are substituted
into Eq. (10), and if the frequencies w1, wp, and w3 are assumed to be
in the exact ratio 9:10:12, the following equation results

T = (60 - 66)T + (-100 2y lOS)T + (40 £i~— 38)T

1 (1)
g W 2 2 2

3

Equation (11) enables one to compute a group time delay, referred to any
arbitrary frequency w, in terms of the three measured phase delays, T3,
To and T3. Note that T, in a linear function of Ty, T2 and T3 and that
the sum of the coefficients (weight factors) is unity.

Also note that the measured phase delays Ty, Tp and T5 are simply
the measured phases, including the appropriate multiples of 27, divided
by the frequencies (i.e., Egs. 3, 4, and 5). However, phase must be
measured with respect to some local reference, so an unknown constant
will appear in each term on the right side of Eq. 1l. The sum of the
coefficients is unity, so this same additive constant will appear with
Tg. This additive term will be assumed to be constant for the moment,
but, in any event, it certainly is not dependent on the propagation me-
dium,

Returning now to Eq. (11), it is of special interest te look at
variations in the coefficients of Ty, Ty, and T4 with frequency. These
three coefficients will be designated as Ky, Ky, and K3 (i.e., Ty =
KiTi + K2T9 + K3T3), and they are plotted in Fig. 7. Note that in the

12.0 - 12,5 kHz range none of the coefficients exceeds 6. Purely random
errors in the phase delay measurements do, of course, get "amplified" by
the coefficients, so large values are undesirable. How undesirable,
though, is a matter of degree, but certainly factors of 4 or 5 are not
unreasonable, Pursuing this further, if one assumes the three measure-
ment errors associated with Ty, Tp, and T3 to be independent and each
having unity variance, the resultant rms error in T, would be as shown
in Fig. 8. It should be apparent that the best choice of reference fre-
quency involves a compromise between the induced measurement noise error
shown in Fig. 8 and the diurnal-shift error. This will not be pursued
further from a theoretical viewpoint. Instead, we will proceed directly
to some experimental results that demonstrate these concepts.

Experimental Examples

A formula for computing a synthetic group delay at any desired fre-
quency in the OMEGA range was derived in the previous section. This,
along with experimental phase measurement data on 10.2, 11-1/3, and 13.6
kHz, should provide a means of verifying the theoretical curves of Hamp-
ton [7] and Watt [8], reproduced in Figs. 4 and 5. These curves were
worked out for a single mode with idealized boundary conditions, so we
should not expect exact correspondence, Qualitatively, though, we would
expect to find the group delay to be greater during the day than at
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night for frequencies less thar the crossover, and then the dav and
night delavs should approach each other as the frequency is increased to
the crossover frequency avound 12.3 kHz,

A limited amount of experimental data was obtained from the U. S.
Coast Guard OMEGA Wavigation Svstem Operations Detail (ONSOD), which
gathers phase measurement data from various monitoring sites located
around the world. Thasc difference measurcments were in the form of
strip-chart recordings and covered the time period from March 10 through
March 31, 1975. Two transmission paths, Trinidad to North Dakota and
North Dakota to Hawall were selected as examples for presentation here.
In both cases, the monitoring sites were close to the local transmitters,
so the reccorded phases can be considered as "one-wav' phase measurements.
Phase data at all three OMEGA frequencies were read from the charts at a
rate of one sample per hour, and then these data were used to compute
group time delays at various referance freguencies in accordance with
Eg. 11.

Results for the Trinidad to North Dakota path (3-D) are shown in
Fig. 9. Twenty-two davs of data are shown superimposed in each of the
four parts of the figure. In order to establish a perspective, the un-
compensated phase delav at 10.2 kliz 13 shown In the upper-left corner.
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Fig. 8. Normalized RMS error due to measurement noise.

As expected, the diurnal shift is quite large, roughly about 75 micro-
seconds or about 3/4 cycle at 10.2 kHz. The other three parts of Fig. 9
show the group delays computed at 11.5, 12.0 and 12.5 kHz. Note that
the average day and night delays do tend to equalize as the reference
frequency is increased to 12.5 kHz. The random fluctuations also in-
crease dramatically as the reference frequency is increased, especially
at night. It is tempting to explain this as being due to phase measure-
ment errors being amplified by the Ky, Ko, and K3 coefficients, which do
increase somewhat in going from 12.0 to 12.5 kHz. However, the daytime
portion of the curves does not show a similar increase in randomness
with an increase in reference frequency. Thus, a more reasonable ex-
planation would seem to be the basic instability at night due to modal
interference.
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Results from the North Dakota-Hawaii (D-C) path are shown in Fig.
10. The arrangement of the plots is similar to the Trinidad-North Dako-
ta example. The equalization of the day and nighttime delays is not
quite as conspicuous in this case, because the path is largely east-west
and the transition between day and night is spread over a longer time
period than for the Trinidad-North Dakota path.

In both examples, it should be noted that the group delay varia-
tions are considerably less than diurnal variation shown by the raw 10.Z2
kHz phase data. This is to be expected because Hampton's curves (Fig.

4) indicate the day-to-night variation in group velocity should only be
about one part in a thousand, whereas we would expect about three times
this much variation in phase velocity. Thus, group delay has a natural
insensitivity to diurnal variation in the 11.5 to 13 kHz range. For
timing purposes, it is important to note that the large 24-hour compo-
nent error has been virtually eliminated at a reference frequency of

12.5 kHz, leaving only relatively rapidly fluctuating noise. Presumably,
this should be easier to filter than the relatively low-frequency 24-hour
error, so this will now be pursued further.

Filter Example

In the timing problem under consideration, we will assume that we
have a received CW signal from a remote source (OMEGA) and a correspond-
ing signal from a local source. Both will be assumed to be referred to
the same nominal frequency via whatever frequency synthesizers and/or
dividers are necessary. The local source may be just a simple crystal
oscillator, but, in any event, there must exist some local reference to
compare with the received OMEGA signal,

The filtering problem here falls into the general category of com—
plementary filtering [10], so a few words are in order about this type
of filtering. TFigure 11 shows three forms of filtering operating on twc
independent noisy measurements of the same signal s(t). The contaminat-
ing noises are nj(t) and nyp(t). Note that all three implementations
lead to identical end results., The designer's problem is to choose the
best Y(s) for the noises present in his particular physical situation.
Each of the block diagrams in Fig. 11 lends a slightly different insight
into the design problem. The straightforward two-channel version shown
in Fig. 11(a) clearly shows the complementary feature of this type of
filtering. ©Note that the signal s(t) passes through the system undis-
torted and is not affected by the choice of Y(s) in any way. TFig. 11(b)
shows that the design problem reduces to a separation of nj(t) from
ny(t). For example, if ny is low-frequency noise and nj is high-fre-
quency noise, the obvious choice for Y(s) is a low-pass filter. This
will preserve nj(t) to some degree of accuracy, and it can then be sub-
tracted from the first measurement to yield an improved estimate of s(t).
The feedback version shown in Fig. 11(e¢) is to be preferred over (a) or
(b) in situations where either nj or nj is unstable with time. The lin-

460




“SL61 YoarW TE-0T 107
yiled TreseH-®IONBQ YlioN I0] siepTep dnoid pue eseyg 01

31 Flda BRI EIb~D0kH~ ' H Dol dlke NaT1HOwdRida
PR A 1 T | A | Ab¥ 2707 04730 3CHAS




s(t) + nq(t)——>11 - Y(S)] -

s(t) + ny(t) ——>  ¥(s)

(A) COMPLEMENTARY FILTER. IN COMPLEX

DOMAIN: S = S + N](1 -Y) + N2Y

s(t) +ny(t) . s(t)

Y(S)

(B) DIFFERENCING - FEEDFORWARD IMPLEMENTATION.

s(t) + n](t) + R
in‘“ > 5(t)
Y(S E é“
i ~(YzS) + s{t) +nplt)

(C) FEEDBACK IMPLEMENTATION.

Fig. 11. Three equivalent implementations of a complementary filter.

ear range of the operations indicated in (a) and (b) might be exceeded
in this case, but this can be avoided with the feedback implementation
shown in (c).

The linearity restriction just mentioned really only applies in
analog systems., If the filter is operating on digital data (i.e., num-
bers) there is virtually no such restriction. Either continuous analog
or digital data may be encountered in the timing application. Obvious-
ly, with the aid of a digital processor and appropriate interfacing, all
sorts of interesting possibilities exist, including computation of group
delay referenced to any desired frequency in accordance with Eq. 11.
However, in the interest of keeping the discussion brief and simple, we
shall be content with a simple analog example.

To illustrate the benefit of the group-delay approach (in contrast
to phase delay) consider the observed OMEGA signal to be the beat signal
between the 11-1/3 and 13.6 kHz transmissions from a single OMEGA sta-



tion. We will assume that the electronic circuitry is such that it pro-
duces an analog CW signal at the difference frequency of 2-4/15 kHz.
This can also be thought of as the envelope of a single modulated wave
whose carrier is midway between 11-1/3 and 13.6 kHz, or 12.46---klHz.

The envelope travels at group velocity, so the phase of the envelope is
delayed by the group delay, in this case referenced to about 12.46 kHz,
Note, by coincidence, this is very near the day-night crossover. Thus,
the phase-delay characteristics of the beat signal between 11-1/3 and

¢+HL

+ n = LOCAL PHASE ERROR
IT’ n_= OMEGA PHASE ERROR

Fig. 12, TFirst-order filter example.

13.6 kHz should be close to those shown in Figs. 9 and 10 for the 12.5
kHz reference frequency. That is, the major part of the diurnal varia-
tion should be eliminated, leaving only the more rapidly varying phase
error. The beat signal at 2-4/15 kHz can now be compared directly with
the phase of the local source suitably divided down to the same fre-
quency. Thus, in this example, there is no need to "compute" a synthet-
ic group delay, because a sinusoidal wave with essentially no diurnal
shift can be obtained directly in analog form.

The filter block diagram for this example is shown in the "feedback"
configuration in Fig. 12. In this case we might expect the residual
propagation error associated with the OMEGA source to be relatively high
frequency noise., On the other hand, one would expect unstable, low-
frequency drift exrror in the local reference. The spectral characteris-
tics of these two error sources are quite different, so we can expect
the complementary filter to do a respectable job of separating the two.

A low-pass filter is the obvious choice for Y(s). TFor purposes of illu~-
stration let Y(s) be of the form

1
T(s) = 773

where T is the time constant of the filter., This is the simplest pos-
gible low-pass filter. Some commercial systems are capable of operating
with a time constant of about one day, so we will choose this as the
time constant T in this example. We shall then compare the complemen-
tary filter outputs with raw 10.2 kHz OMEGA as the reference on one
hand, and with the 2-4/15 kHz beat signal as the OMEGA reference on

the other. Five days of actual B-D OMEGA data for 3-7 March 1975 with a




sampling rate of one sample per 10 minutes was used as the remote refer-
ence in the simulation. The local reference for this example was as-
sumed to be a relatively high quality source with a drift rate of 1 part
in 1010,

The results for the 5-day simulation are shown in Fig. 13. The
first two or three days may be ignored as the transient period, but note
as the system approaches steady-state, the simulation with the beat sig-
nal as reference has considerably smaller fluctuations than the raw 10.2
kHz phase-reference system.

There was no attempt to optimize the filter in this example.
Rather, the filter form and time constant were chosen to conform with
current state-of-the-art phase-tracking time/frequency systems. Appli-
cation of optimal filtering techniques should provide even further re-
duction of the residual error.

0--12.47 GROUP DELAY
X--10.2 PHASE DELAY

15.00 15.00

(USEC)
12.00

9.00

ERAOA

I T T T T 1 1 1 U
n.oo 0.50 1.00 1.50 2.00
DRTS

Fig. 13. Comparison of errors for phase- and group-referernce
systems.
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Summary

Tt has been demonstrated that group delav in the 12.0 to 12.5 kHz
range exhibits much less diurnal variation than the corresponding phase
delay. Thus, if the local retfersnce is coupled to-the vemote reference
via greup delay rather than phase delay, then the local filtering prob-
lem is less severe, Also, the resulting [iltering problem was shown to
fit within the framework of complementarv filter theory. Once this is
recognized, a considerable bodv of both optinization theory and exper-
ience can be brought to bear on the problem. Thus, the OMEGA system
with its three coherent transnissions shows considerable promise as the
long-term reference in a precise time/frequency svstem.
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