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ABSTRACT

A standard statisticail treatment of the measurements of
frequencies of clocks can be done simply by computing
the mean i and variance ¢< of these measurements. How-
ever, drifts {aging of crystal clocks) pose a problem
because they cause a troublesome dependency of . and o?
on N, the number of sampies. While such measures in
the time domain can be made more meaningful by using
the mean square successive difference instead of o2 as
a measure of clock stability, RADAR, microwave spec-
troscopy and other applications require measures which
give sideband to carrier power ratios (frequency domain
measures). The principles of such measures and their
various advantages and disadvantages will be discus-
sed.

INTRODUCTION

This paper has been prepared at the request of the program commit-
tee which wished to have the subject of frequency stability measures
emphasized as one of the issues of this year's conference. It 1is
therefore proposed to review the subject as an introduction to more
specific papers and to the panel discussion which is to follow these
presentations.

There is a considerable amount of written material available which
can serve as introduction to our subject. One of the best introduc-
tory coverages is given in Rovera's (IEN, 1974) lecture notes. Ap-
pended is a selected 1list of original contributions. Two excellent
and complementary reviews are the NBS Technical Notes No. 669 (D. Allan,
1975) and No. 679 (D. Howe, 1976). One cannot expect to improve upon
such lucid and exemplary expositions of the subject. One can only
attempt to present it in a different style, context and accent.

We can divide our subject according to various lines of which the
division short-term vs. Tong-term stability is only a more superficial
division. By measurement techniques one can distinguish measurements
in the time domain from freguency domain measurements. One can char-
acterize stability in the time domain and in the frequency domain,
Here we would like to emphasize yet another dichotomy:
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A. Trends, Systematic or Deterministic Variations of Frequency,
VS.
B. Random Variations as Part of a Random Process.

A failure to separate the systematic variations from the random part
will, in most cases, affect any characterization of a clock in a very
misleading way (Barnes and Allan, 1964). On the other hand, the random
part of the observed frequency variations of a clock is of the same
type as the observed variables which arise from many other random proc-
esses. Such data form a time series which can be investigated and
characterized with the same methods as have proved useful in other
sciences. We therefore do not have to re-invent the wheel but can
simply apply what we can find in the literature of Time Series Analysis
etc. (Box and Jenkins, 1970, Jenkins and Watts, 1968, Wiener, 1949).

CLOCK SAMPLING

Table 1 shows the general scheme which we can follow if we sample
our clock error x(t) at regular intervals h. Such sampling is the basic
measurement in the time domain. We use a clock output marker (which
could be a pulse or a sine wave zero crossing) and a reference clock
"R" which we assume to be perfect. The sampling of the clock error of
the test clock "T" is done with a time interval counter at the time t.

START(T) - STOP(R) = x(t) (nm
The complement of x(t) is called the clock correction, C(t) = -x(t).

These measurements constitute our basic time series in which we desig-
nate the number of each measurement as the index k.

Table 1
Index Time Clock Error First Diff. Second Diff. Third Diff.
k t=ty+kh x(k) ux(k) v2x (k) v3x (k)
0t + Oh x(0) - - -
1t +1h x(1) vx(1) - -
2 tO + 2h x(2) ux(2) v2x(2) -
3t + 3h x(3) vx(3) v2x(3) v3x(3)
4 t + 4h x(4) vx(4) v2x(4) v3x(4)
5 t + 5h x(5) vx(5) v2x(5) v3x(5)
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We assume n + 1 measurements (last k = n). We use "backward" differ-
ences v because that is what we can compute in real time immediately
after a measurement. The symbol v may also be understood as a linear
operator to be applied to a table entry Z (cf. Hamming, 1962):

v(z,) = 7 -z (2)

v(v™(zy)) = "Mz} - vz q) (3)
A similar operator is the backshift operator B:

B(zy) = zk-7 (4)

We have obviously the following operator equation which is true for
whatever argument is chosen:

v = 1-8B (5)

(1 is the identify operator). A formalism such as (5) will be used in
the discussions of the Box-Jenkins (1970) approach to statistical mod-
eling. Let us apply these concepts to table 1 where we interpret the
mth difference as a symbolic mth power of v. We use the binomial
theorem:

vm = ('I _ B)m = _O(_.[)r (m} BY‘ (6)

BY means that we apply B r times. As an example we can write the gen-
eral expression for the 3rd difference in our table 1 by multiplying
equation (6) with x(k):

3 3]
o3 i, R -
7% (k) rEO (-1) l”} x(k-r)
= x(k) - 3x(k-1) + 3x(k-2) - x(k-3)
FREQUENCY

The average normalized (relative) frequency departure (error) during
the basic interval h is




Its dimension is time error per unit time, i.e. it is a dimensionless
(relative) quantity. It is therefore given as parts per billion etc.,
whereas the time error is given as time, e.g. as microseconds (us).
Frequency F, as distinguished from relative frequency error ¥(t), is
given in cycles (of 2r radians each) per second (Hertz, Hz). The period
P is the duration of one cycle: P = 1/F. Angular frequency @ is given
in radians per second (rad/s) and we have Q@ = 2xF and

v = AL _ 129 - 2
YOETF T et X T g (8)

where ¢ is the phase error at the frequency F.

Qur timing waveform is always bandlimited since it comes from mate-
ial c¢ircuits. Our concept of average frequency may therefore be
brought to the 1imit for a smaller and smaller sampling interval At and
we obtain the concept of the instantaneous relative frequency departure

. AX dx 1 d¢
v = Tim ap t g T ogat
At 2o

For practical reasons our basic sampling interval h must be chosen
sufficiently long so that the Ax can be resolved above the noise Tevel
of measurement. Once the measurements are recorded it is of course
easy to choose any multiple of h as the averaging or integration time
t. In the general case we have

1 .
= g0 (9)

T = kh (10)
where k > 1 is a positive integer.

Now, if oup clock errors would be purely deterministic and if they
followed an mt degree polynomial

x(t) = al * ajt + apt? + agtd ... + attM (11)
which we could consider e.g. as the beginning of a Taylor series, then,
according to the fundamental theorem of the difference calculus, the

mth difference would be a constant. By applying the operator v m times
one can verify that

v'x(t) = aim!h" (12)

If we use the index k as the argument with h = 1, then the polynomial
is now in powers of k

X(k) = ao + a'lk + a2k2 + 33k3 kPP + amkm ('”n)




vix(k) = am (12')

The (m + 1)st differences are zero. Since (12) and (12') refer to the
same quantity we also can see that

a. = agl'phm (13)

where ay has the dimension of time M1, But in addition to measurement
noise, our c}ocks are always subject to random disturbances and there-
fore the v™! will not be zero but will reflect the clock erratics.
These erratics will be magnified as higher differences are taken ac-
cording to (6).

These properties of the higher differences offer a possibility to
obtain insight into the clock's performance. We could try to form the
average difference

W) = ey D70 (127) (1)

b

for successive ¢ =1, 2, 3 etc. until we find a v™x(k) which is not
only close to zero but also shows no trends if we take different
samples, i.e. which is stationary. OQOur clock performance would then
contain a systematic part in the form of a polynomial of degree m-1 and
the coefficient of the highest power term would be

1 -
N e 71 x (k) (15)

As an example consider a quartz-crystal clock which can be modeled
typically with a second degree polynomial for its clock errors

x(k) = a, +ajk + apk’ + x' (k) (16)

where x'(k) are the residuals. The third differences will average
(show no trend) close to zero and we find for the aging coefficient

2% (k
a, = ”2(( ) (17)

Furthermore in this case one can use as a measure for the clock errat-
jcs (the random part) the average third absolute difference as it once
was actually used by H. M, Smith in the early 50's at the RGO. Such




a measure would be written -in our terms

Vo= jesx(K)]

By using the root mean square we obtain a sort of higher variance (since
the average is close to zero) as it has been discussed by Kramer at the
PTB (1?;3% who called it curvature variance. Expressed as sigma (vari-

ance ~ we have

- 3x(k)]?
5.(h) = /_[%éiﬁg]_ (18)

This measure is insensitive to frequency drifts and in that regard
would be superior to the pair variance (two sample Allan variance).
The pair sigma, which for good reasons is the most popular frequency
stability measure, is in our terms

[v2x(k)]?
y(h) = T (19)

Formulae (18) and (19) are, in fact, just special cases of the discus-
sion given by Audoin & Lesage (1975). A sample variance 05, finally,

can simply be obtained by averaging the vx(k) with a naive determina-
tion of the standard deviation and squaring it. But again, this is
usually a misleading procedure if we do not first take off any trends
in the record (in another way of looking at the problem this amounts
to forcing the averages to zero in which case, if we have a white
noise process, all of the above discussed mean square measures become
variances of the same magnitude).

The simplest case in principle, and a very important one for con-
ceptual clarification, is the case of purely random y(k)'s. We call
that white FM. A cesium beam atomic clock would be an example (typical-
1y for ¢ > 10s) since the servo loop error signal coming from the
atomic beam tube js shot noise fundamentally due to the arrival of indi-
vidual atoms at the detector. We should have no trends in this case
but the random additions of noise produce a random walk in x(t) as is
shown in fig. 1. This random walk (RW) has neither a stationary mean
nor a stationary variance in x(t) but of course, the differences con-
stitute a normal process by definition. This is a major reason why the
y(t) play such a large role in comparison with the x(t) which are the
values one measures directly. By using differences one gets rid of not
only systematics but a RW as well.

494




An actual clock performance as shown in fig., 2 (which gives the
y(19) of Cs 571) exhibits always some systematic disturbances in addi-
tion and the clock errors are therefore much larger. In addition to
a linear trend of +1.5 x 10713 p.a. which has been removed, we see that
there is some obvious correlation in the frequency residuals. It is
this tendency of frequency variations to persist for a while which
produces a dispersion of the time error which is greater than in the
case of purely random FM.

It will be clear at this point that

(1) The measures of clock performance based on sampling
(table 1) become less sensitive to Tong term trends as higher
differences are used for tne analysis.

(2) It would be most desirable to agree on a standard way
to reduce the data to a clock performance measure which is
related to the application of clocks rather than to adopt
procedures such as those which led to formulae {14) and (15).

The statements (1) and (2) are in mutual conflict only at first sight
because in almost all cases we do not need to go to higher than sec-
ond differences if we take off any long-term trends first. This allows
us to satisfy the requirement (2) in the most straightforward way.

A. ETimination of Trends

There are three main classes of approximating functions which we
can consider viz.

(1) Polynomials in t (or k) of degree m,

(2) Fourier Series,
“61t
(3) Exponential Functions, Loe
:

A1l of these transform into another function of the same kind (they are
class conservative) under a transformation t - t + k, i.e. we can
assume that there is no special origin inherent to the problem. If any
singularity is present in the record then one can't use these functions,
at Teast not for the whole range. In the case of clock records we are
not so much concerned with genuine singularities. But often we see
breaks in clock rate due to a specific but usually unknown disturbance.
The most natural way to handle such cases is to break the record at
these points and to use a particular function for the approximation of
each undisturbed part. The simplest case would be the approximation of
a clock with pieces of straight lines. This can usually be done with
the y(k).




Only class (1) is class conservative also under the transformation
t - kt. This class is therefore of major importance if no natural scale
is inherent in the problem. For an extensive discussion of approxima-
tion with these mathematical functions cf. Hamming (1962). For these
reasons clocks have been approximated with polynomials in the over-
whelming number of cases. Quadratic and cubic polynomials are usual
for the y(k) and the x(k) of crystal clocks (the cubic is to account
for a changing frequency drift due to aging). For the mathematics of
polynomial approximation cf. Jordan (1965) if one does not have a
"canned" computer or calculator program available.

It is clear that by increasing the degree of the polynomial one can
reduce the variance of the residuals but there is an absolutely essen-
tial point to be kept in mind. Any attempt to absorb the random vari-
ations in a mathematical model with a complexity greater than what is
necessary for the elimination of the genuine Tong-term trend will Tead
to completely illusory gains. An apparent slight decrease of the vari-
ance of the residuals will have been obtained at the price of a
representation of the trends which is useless and even dangerous for
any amount of extrapolation. The same danger exists if a clear break
due to a real clock disturbance occurs and is not recognized as such
but incorporated into a greater complexity of the clock model. Eighth
and higher degree polynomials have been used for long term clock model-
ing instead of breaking up the record into pieces which can be fitted
with a low order polynomial. This is fundamentally wrong and danger-
ous. Similar is the principle of parsimony (Box & Jenkins, 1970).

However, the elimination of trends is usually extremely simple.
0f greatest importance is the recognition of breaks or steps in the
record. In most cases we will then find a more or less linear drift of
frequency which can easily be subtracted from the record. In some cases
the elimination of trends is a tricky problem and it is wise to be con-
servative and to take off only the most obvious overall trend instead
of trying to be sophisticated. In that case one is likely to end up
with a mathematical model for the low Fourier frequency components of
the random part of the frequency variations.

0f course, the problem, if there is any, can always be solved by
going to higher differences. Such a filtering (15t order differences)
is already being done automatically by using frequency instead of phase
records for evaluation. This brings us one step closer to the goal of
stationarity which produces stable measures. But this is of major
jmportance mainly in clock modeling for purposes of prediction and much
less so for the characterization of performance as needed for specifi-
cations, testing etc. It is a main benefit of the pair variance that
it uses second differences thereby avoiding most of the problems
mentioned while still giving an objective reproducible measure which
is closely related to at least one important class of applications.
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Random Process Characterization

Assume that we have freed cur record from obvious trends. A natural
question will be whether the rasiduals x'(t) will now be purely random
and/or stationary. Particularly the stationarity question has plagued
the discussions because of a number of frequent misunderstandings.

First we must realize that no natural process can be assumed stationary
in the sense that its statistical measures are independent of time.

The universe does not allow any process to go on indefinitely, therefore
Tife time limitations and aging phenomena are commonplace. Stationarity
can only be a property of models as it was pointed out so emphatically
by Barnes (1976) and Barnes et al (1971). The question must then be
asked whether and how one can apply stationary models,

lLet us consider an exampie: Fig. 3 gives the daily frequencies of
clock 837 after removal of a Tinear frequency drift of -7.2 x 10713
p.a., in a record of more than 900 days. We can see two types of non-
stationarity quite clearly:

(1) a residual long-term frequency variation of systematic
character {(non-stationarity of u) and

/

(i) an increase in the frequency variations from day to day
(non-stationarity in o4).

If we really want to characterize fully the behavior of this clock then
we must display the record as it is given in fig. 3. Any other measure
of frequency stability characterization can only be done by compacting
data. But this is a euphemism, we actually must throw data away. If

I say that after drift removal the sample variance is 4.4 x 10-2€

(o0 = 2.7 x 10713) then this will give only a very general idea of the
overall variations and it will be too pessimistic for most purposes.
The day to day variations are really much smaller. 1In contrast to the
sample variance which is rather useless in such a case, the pair sigma
(corresponding to the two sample Allan variance) is more realistically
tuned to what is useful in a time keeping application. It is only
asy(19) = 4,5 x 1071%. This datum will be even more useful if we add
t%e explanation that this is an average value, that the sigma is better
for the first two years of operation and is getting worse now. There-
fore we must also reaiize that the stability measures have a time vari-
ability. This adds a significant complication to the problem of sta-
bility measures., We interpret our samples as pieces of stationary

time series models and we state the model parameters as they change
with the samples which come from later dates (when the clock ages).
Since the samples are necessarily limited in time, our confidence in
the statistics must be Timited also (cf. Lesage and Audoin, 1973). But
there is no point at all in insisting on hairsplitting perfection which
is of no concern in practice since we don't have perennial clocks.




THE AUTOCOVARIANCE AND THE SPECTRAL DENSITY

As we could see in the last example, the frequency residuals y'(t)
can be correlated in time (fig. 3). A purely random (uncorrelated,
normal) process is easy to characterize with its mean u and the vari-
ance o<. A process with correlated distrubances z(k) can be character-
ized by its sample mean i (we use the "hat" to distinguish the estimates
from the ideal population parameters):

poo= %" r oz(k) = z (20)

and the autocovariance (acvf) for lag u:

c(u) = %—- . g+] (z§ - 2) (254 - 2) = ¥(u) (21)
i=u

and we see immediately that
c(0) = &2 (22)

The acvf is the average lagged product of the deviations from the mean
and can therefore be interpreted as a quantity which originates from
the variance but which is "spread out" into the lag axis. For any pre-
cision in the estimates it is clear that n will need to be Targe and

in general will be n > 50. The normalized acvf is known as the auto-
correlation function (acf) o(u):

o) = H - L) (23)

Obviously the c(u) or the r(u) = ¢(u) cannot be estimated confidently
for greater lags than a fraction of n and in practice one should stay
within u < n/2. (Jenkins and Watts recommend u < %_). Completely

random uncorrelated disturbances will have an acf which drops to zero
for any u > 1. In contrast we see that actual clocks show a r—(u)

which indicates significant correlation for lags of many days (figs. 4
and 5). Indeed the acvf of V(-) gives most of the significant informa-
tion of interest but it does not give it in a form which is best suited
for further analysis. That is available in the Fourier transform of the
acvf, the (one-sided) spectral density of the y:

oo

Sy(f) = 4 J Y(u)cos(2nf-u)du (24)

o
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Since the S(f) and the acvf are a Fourier transform pair we also can
go backwards to the acvf once we know the S(f):

X

yglu) = J( S5(f)cos (2rf-u)df (25)

o

A consequence of this Tast formula is

on
»

’ Sy(f)df (26)

[}

YyKO) = 0;

which explains S(f) as a variance density function of Fourier fre-
quency. Its dimension is therefore variance per Hz. One must not be
misled by these simple and transparent relationships. S(f) is not
directly available but must be computed from a finite sample. This can
be a tricky process and Jenkins and Watts (1968) or similar references
must be consulted for guidance on details. Figs. & and 7 show examples
of Sy(f) computed, however, from the acf which normalizes the plots to

a g% =1,

A special caveat concerns the role of . For each value chosen,

yy(u) and Sy{f) will be different as can be seen from (26) but also

because of the measurement resolution which changes with t. The es-
sential point is, however, that sampling the frequency for an interval
T corresponds to a convolution with a rectangular time window. This
is transformed into the frequency domain as a factor

~ Sinz(ﬂﬁzl
ko= (nfr)? (27)

so that the spectral density of yt(K) is really obtained from the spec-
tral density of y, the instantaneous relative freguency departure, by
multiplication with K:

S_(f) = S (f)-K (28)

A second factor K' is needed if we want to compute an estimated variance
for a sample of finite data Tength. As explained by Cutler and Searle
(1966) in great detail (their paper is indispensable for an understand-
ing of details, unfortunately it is full of annoying misprints), sam-
pling for a total time n-h, cf. table 1, and removing the drift and
average (i.e. our elimination of systematics) corresponds to a high

pass filtering with two zeros and a cutoff frequency
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fL = 1/nh7 (29)

Therefore the variance in such a sample must be expected to be smaller
than the true variance. The computation achieves this with the factor

K' = 1 - (sin2fnhn)/(fnhr)?2 (30)

and we obtain

o0

2(n) = j 5, (F)K-K' “df (31)

[+]

The high pass filter action of K' can usually (if we have removed the
systematics) be approximated by a low frequency cutoff on the integral

2 () f Sy(F)-K-df (32)
1/nhr

A method of obtaining ¢ from the frequency domain without sampling and
digital analysis is actually based on this formula (Rutman, 1974,
Rutman and Sauvage 1974).

On the other hand if we consider how we actually obtain our estimate
of Sy(f), the Sy(f), then the situation is somehow the reverse of what

we have just discussed. Data acquisition for a total time h-n corre-
sponds to a convolution of the true S(f) with a filter function Qc(f)
which is the Fourier transform of the time window (the Hanning or
Hamming etc. which we perform on the acvf). Therefore the true S(f)
differs from the estimate S(f) which we compute:

E[S1 = seq.(f) (@ signifies convolution) (33)

The effect of this is a blurring of the details of S(f), making it
impossible to resolve details finer than Afa1/nhm.

Since Sy(f) is of such fundamental importance for frequency stabil-
1ty considerations, the accepted terminology concerning types of clock
erratics often refers to it. As an important example we mention white
FM, completely uncorrelated frequency disturbances, which is charac-
terized by a Sy(f) = constant between the practical Timits f; and f}

given by record Tength and sample interval. We have

f, = 1/2h (34)
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This is related to the sampling theorem which one must also keep in
mind in regard to the danger of aliasing. If the sampled process con-
tains substantial noise at or above f,, then special filtering is ad-

visable (cf. Baugh 1971).
GENERAL COMMENTS ON THE USE OF STATIONARY MODELS:

If z(t) (which could be a model for our x, y or any of the v's) is
stationary then Y(u) is an even function and the probability distribu-
tion function P(z) (pdf) is time invariant.

If z(t) is "wide sense" stationary then p is constant and v(u) is
only a function of u.

If z(t) is stationary and ergodic then the ensemble (stochastic)
average p is equal to the time average z(t):

L= 200 = Tim % 2(t)dt (35)

T+ e

-T

If we have done a sufficient job with the removal or filtering of the
systematics then our averages will remain stable regardless of which
part of the record we select for estimating the average:

e 1 1N
G(N, 1) = N—ﬂukii z(k) (36)

will be nearly constant if N is sufficiently large.

A large power of S(f) at low frequencies f is typical for trends
which have not been removed (cf. figs. 3 and 7). Barnes (1976) gives
an excellent discussion that in such cases the experimenter cannot
make believable statistical estimates. Many learned arguments about
what happens at f = 0 have simply overlooked the fact that as one runs
out of data, one also loses the justification for the use of statis-
tics. This is the real meaning of the distinction of trends from
the higher frequency noise which alone is the genuine raw material
for statistics. But there is also this other aspect of the separation.
Most applications are concerned only with clock properties for time
intervals which are shorter than a certain 1imit of usefulness given
by the nature of the problem (e.g. re-synchronization interval, or
time constant in a feedback loop etc.). Therefore measures, in order
to be useful, must have been freed from long term effects (Barnes &
Allan, 1964).




DISTRIBUTION OF THE ¥(k)

It was obvious from some of the previous examples that the actual
y(k) may not be Gaussian distributed. If z be again a representative
random variable, p(z) the probability density function and P(z) the
probability distribution function then we have, of course,

Z o

P(z) = f p(z)dz and f p(z)dz = 1 (37)

X0 -0

One can plot the P(z) as a function of the magnitude of the deviation
preferably expressed in units of o. Figs. 8 and 9 give an estimate of
P(Vﬁd) of our two representative cesium clocks 571 and 837. One notes
the non-normal nature of the erratics of 837. Such plots seem to have
only very limited usefulness compared with the plot of y(t) itself.

THE PAIR VARIANCE (TWO SAMPLE ALLAN VARIANCE)

In our examples which showed actual clock behavior {Cs 571 and 837)
we could see that even in the absence of long-term trends, the determi-
niation of the estimates of variance (62) depends on the number of
samples taken. It was therefore proposed by Barnes and Allan (1964) to
use N = 2 samples for a variance determination and to average over many
such groups to improve the estimate. Such grouping produces a variance
which is the Timiting case of a sample variance and one idea would be
to simply standardize the procedure to N = 2. However, this pair vari-
ance has additional benefits. The general sample variance depends not
only on the number N but also on any deadtime T between freguency
measurements and Allan (1966) introduced the notation o2(N,T,t) for this

. . Y
general sample variance, In our case of x(t) sampling we have, of
course, no deadtime between frequency measurements because we can com-
pute the y - p» cf. our equation (10), for any selected sequence of

measurements. Since the pair variance is developed by Allan as the
limit for N = 2 of the general sample varjance, it contains a factor
of 2 in the denominator which is the only difference from the mean

square successive difference of y. The mean square successive differ-
ence was used already by von Neumann and others (1941) for the charac-

terization of processes with a drift such as it was encountered in
ballistic testing.

Allan has also introduced a variance ratio y (we assume zero dead-
time:
o2(N,1)
v(N,t) = 2.9 (Tater also denoted By (N,u)) (38)

s T




For purely random noise ~ = 1, and this allows an easy check for the
noise type present in one's data. For details one should consult Allan
(1966) but it must be kept in mind that the utility of y is primarily
1imited in usefulness to cases where "power law" noises predominate.

We can see this from the following relationships:

K=n o o )7
Yy Yo
k=2 k™ 7k-1

52 = -

which for Targe n becomes approximately

L N
H k:‘[ i f\ _ f'—m‘}_ {_‘_:? V’k.j;’l."‘i (40)

If u(ly) is assumed to be zerc then the firss term will be the estimated
variance and the second the estimated acvf “or a lag of 1 (which is ,
if expressed in s):

7-7_2,(23'f> = qz[y<L}J . ":“—"\ | / (4‘I )
v Y
since c{u) = r(u)s? we obtain as a usefuyl approximation for large
samples
1
w(NyT) o RN (42)

We can see that Allan's variance ratio can be related easily to the
beginning of the autocorrelation function. C(onsidering the great
simplicity of the concept and the computation of - (N,v), if we restrict
ourselves to the case N=n and no deadtime, it iz & very useful fool in
the set of the various stability measures. The pair variance G?(*)

which is a short hand notation for Z<(2,- and much more so the pair

. . J — o - - N
sigma iy(r) have become a standard for frequency stability specifica-
tions and measurements for averaginag times greater than about 1s

because it is the simplest quantity to measure and it is relatively
insensitive to the choice of measurement circumstances. [t provides

an objective measure even in tne presence of some systematics in the
record because it uses second differences of phase as we saw in our
equation (19). In practice, the incentive *o go to more sophisticated
aggregates of the vT(k) for m = 2 nas been ravely given in view of what
we said before about the necessary remova® 27 systeratics.




An excellent characterization of oscillator performance can be
given in the form of sigma-tau double Togarithmic plots as shown for our
two Cesium clocks 571 and 837 in figs. 10 and 11. 1In the case of Cs 837
we can see the effect of the systematic variations in an upswing of the
graph for large tau's.

MEASURES IN THE FREQUENCY DOMAIN

Up to now we have used the x(t) measures as basis for our perform-
ance characterization; we operated in the time domain and did or did
not transform our results also into the frequency domain to obtain
Sy(f). However, for about f > 1 Hz, such measures can also be obtained
directly. Since we are now dealing with relatively fast phenomena, the
problem of removal of the systematics can be easily circumvented by
phaselocking the oscillators together. This assures that ¢(t) and #(t)
will only vary around zero. The phaselock Toop (PLL) can act as a fre-
quency or as a phasedetector. If the time constant of the PLL is =

then the error signal will be proportional to the phase error ¢(t) for
times t << 7 and proportional to (t) for © >» T - We can assume that

the phase detector is operated in its linear range. A narrow-band Tow
frequency spectrum analyzer or wave analyzer is used to scan the PLL
error signal for the AC power which is contained as a function of
(Fourier) frequency f. We obtain directly the sideband power of the
phase or frequency variations depending on the choice of the PLL time
constant. Of course, the various measures are closely interrelated
(cf. table 2). However, in contrast to the Tong-term measures where
one prefers Sy(f) for the reasons discussed, here S¢(f) is more popular
because most oscillators are dominated by white phase noise in a large
part of the spectrum and this gives a horizontal Tine in S;. Also in
the applications, phase noise is the more fundamental concept and S¢(f)
is more closely related to what is measurable in the Tlaboratory. The
unit of S¢(f) is again a variance (now in radians?) per Hz. The side-
band power can also be directly expressed as a ratio in terms of the
(Suppressed) carrier in db.

Therefore, we see three different phase-time spectral densities in
use today: Sy(f) is the time error spectral density which is independ-
ent of the signal frequency F. Syu(f) is the phase error spectral den-
sity which increases with the square of F. Finally, &A(f) is defined
variously as the single sideband to carrier power ratio per Hz in the
RF spectrum assuming negligible AM, The ratio is also often given in
respect to total power with little practical difference for high per-
formance oscillators. In the Tatter case one can speak of a normalized
density measure since the integral over the total RF spectrum (which
in f-measure goes from -F to +~, since f is centered on the carrier)
must be one:
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F)dF = (43)

-F

X (f) was used by NBS for some time but there is general agreement
today that S.(f) is more clearly defined and more directly related to

what can be measured with the usual test set-up. For small phase devi-
ations (4 << 1 rad) we may use as an excellent approximation

s¢(f) (44)

1
A PLL phase detector ocutput voltage Vp (we assume T > ?J can be con-

verted into the phase ervor (assuming the signal is kept in quadrature
with the reference which is assumed noise free)

Vg

¢ = vad (45)

where V/rad is the phase detector sensitivity to phase errors. The
variance of ¢ at the wave analyzer setting f is per Hz:

. { Vo, rms }2

S¢(f) = " V/rag J (46)

If the signal frequency is measured after a frequency multiplication of
m times then S.(f) will be increased by m® (its db measure will in-
crease by 20 log m).

Example: Two equal quartz crystal oscillators with a 5 MHz output
are being measured at 25 MHz {m = 5) and we assume a phase detector
sensitivity of 2V/rad. We measure with a wave analyzer of 1 Hz band-
width a rms voltage of 200 nV at 100 Hz. This will give for one oscil-
lator at 5 MHz a

~

S, (100 Hz)

- 140 db - 14 db - 3 db (2 oscillators)
- 157 db/Hz

For more details cf. Howe (1976) and Shoaf et al (1973). Practical
questions are discussed by M. Fischer (this volume).




Note: We have used only one-sided spectral densities S (with O
< f < =). Two sided spectral densities S are more popular in theore-
tical work (where f goes from - » to + =). We have

S = %—S and
(47)
[ strrar = [ strar
- 0

RANDOM PROCESS MODELING AND FORECASTING

Given a white noise process ap with zero mean and (constant) vari-

ance o§ we can ask how a more complicated process Zk such as observed

in the ¥(k) of clocks can be simulated on a digital computer. Box and
Jenkins (1970) discuss several classes of models:

a) The Moving Average (MA) of order q is given by

Zy=a to a_ o a ,t ... to a)-q (48)

-1 -2 q

which can be written with the aid of our operator notation

Z; = o(B)a, with o(B) =1+ eB+ ...+ quq (49)

where 0(B) is the MA operator.
For finite q this process is always stationary.

b) The Autoregressive Process of order p (AR) is

Zk = & Zk_l LU ®pzk_p + ak (50)

which in our short hand becomes

(1- 08 - ... - 2BP)Z, = 3y or 2(B)Z, = ay (51)

where o(B) is the AR operator. The magnitude and sign of the 0

determines the degree of internal correlation of the process and it is
seen that a large variety of processes can be obtained since e.g. for

large i and Targe positive . a low frequency component of S(f)
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b) When the model is not adequate, simple visual extrapolation is
the best method of forecasting.

One may also note that the above approach is completely equivalent
to the "filter" approach as sketched in fig. 12. The coefficients of
the digital filter (as well as the operators & & ©) contain the same in-
formation as the spectral density S{f). However, as Barnes (1976)
emphasizes, it is easy to go from the filter and the model to S(f) and
to a time domain measure such as o,(t) but the opposite is not possible,

. y
at least in the general case.

In summary it must be stressed that any theoretical basis available
must be utilized for the removal of systematics instead of building
models which are solely based on purely statistical fits. This is
true even if the theoretical ideas are most general which may still be
suff;cient, e.g., to explain the puzzling flicker noise (cf. Percival,
1976).

Models have an important place in diagnostics, simulation and sys-
tems optimization. In this regard, Box and Jenkins (1970) also dis-
cuss the estimation of a system's transfer function from an available
model.

CONCLUSIONS AND RECOMMENDATIONS

In order to obtain sound measures of clock performance it is nec-
essary to:

a) Specify the conditions of measurement such as fh, the systems

bandwidth; n, the number of measurements; F, the frequency of the sig-
nal; T, dead time if any, in the case of frequency measurements; the
experimenters trust in the results if not expressed as confidence
based on n; the environmental conditions, etc.

b) Remove any obvious systematics such as drifts and state them
separately before the random part of the clock performance (the errat-
ics) is analyzed. Failure to do so leads to unnecessary complications
and often to erroneous results.

c¢) Determine and state, if possible, the environmental sensitivity
in coefficients of sensitivity to pressure, temperature, vibration,
acceleration, magnetic field, etc.

d) State the clock erratics in the same Janquage (time or frequency
domain) in which the needs can be identified. A conversion is possible
but problematic, particularly from time domain to frequency domain.
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For the important case of power law spectra, conversion can be
accomplished by means of Table 2. State any observed time dependency
of the statistics.

1) Time Domain. The two sample Allan variance Ui(r) (or rather
the "pair" sigma o,(t)) has become a de facto standard. A double Tog
plot of o (1) contains most of the information of possible interest in

timekeeping. The practical range is for t > 1s.

2) Frequency Domain. For t < 1s it is generally easier and
more reliable to determine S¢(f) directly with a phase detector and
wave analyzer. Z(f) which is often used, is a practically equivalent
measure; it "looks better" for a given oscillator by 3 db. S¢(f) is
the recommended measure.
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APPENDIX

The Various Uses of Spectrum Analyzers

The output signal of a standard frequency generator can be written
as a time varying voltage:

V(t) = A(t) - sinf[a -t + ¢(t)] t
> = [ ¢dt
l | b
RF Spectrum A. AM Detector Phase Detector FM Detector
! ! |
i Wave Analyzer Wave Analyzer Wave Analyzer
} | !
Spe(f) Sp(f) S(f) 55(f)

Notes: The center of Spp(f) will be at f = F. (2rF = q)

The wave analyzer scans from f = THz up to about 100 kHz in
most practical applications.
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Table 2

Power Law Noise Models With Their Respective Stability Measures

Noise Type S wumow1cmﬂ Time Domain
V\A ) . onm qw?v Slope
* x Ty axmav azﬁqv U
White Phase 2 :mﬁm 0 +2 - o -1 -2
4272
"
Flicker Phase T hyf -1+ mmﬁzﬁwﬂﬁyau + 1.038)
(2mc)?
hy
White FM 0 h -2 0 ——— /2 -1/2 -1
0 2T o
o
Flicker FM -1 h_4/f -3 -1 2Inz « h_, 1 0 0
2 4n?
Random Walk FM -2 h m\ﬁr -4 -2 s hop oo 3/2 172 1
_ 6 -

Notes:

1. Slope refers to double Togarithmic plots of S(f) or o ()} in which the noise types are
distinguished as pieces of straight lines with the slope given.

2. Allan's (1965) y corresponds with the parameter u as it is used here. However, his a is
our o - 2 because we refer to S, instead of Sy. This is the new convention.




TabTe 2 (Continued)

(26525, (F) = 27 S3(0) = (192 5,(9)

3. m%?&

4, meﬁﬁu

mm A .
—_—— ll m. n.... :Nm 5 .
( r ) mwﬁﬁv (2:7)2 @ﬁwu s xmﬁu See also equation (8)
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Table G

Long Term Performance of Ten Cesium (locks at the USNO

Oscillator Days Linear Frequency Sample Variance
Drift Removed (After Drift Removed)
_ {Cey Year in 10-13 fip 10-26)

Cs 346/1C 1200 R 2.0

Cs

532/1C 1200

Cs 549/1 1200 - 2.9
Cs 571/1C-2 1185 + 1, 0.7
Cs 591/1 1732 - 4, 3.1
Cs 654/10-2 372 4.9 ¢.8
Cs 660/1C-2 95¢ 6.4

Cs 783/1C-2 345 3]

Cs 334/10-2 777 . 1.5
Cs 337/10-2 77E V.Y 4.4
Notes

I. The data veter fo woe 0% wnier ae2 measared in reference to
ALTUUSNG, MESN,

2. The units with a "-2 designatior are high performance units
(004).
3., The large variance of T¢ 733/10-7 12 zaused by 2 Jarge non-

2
D0,
Tinear frequensy Aritt wnich was nov o cemoved,

4. Dashes indicate £
straight Tine fit.

(Data courtesy of 0. Fercival, USNO
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