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A standard s t a t i s t i c a i  treatment o f  the measurements of 
frequencies of clocks can be done simply by computing 
the mean :. and variance 7 6 ;  o f  these measurements. How- 
ever,  d r i f t s  (aging o f  crys ta l  clocks) pose a  problem 
because they cause a  troublesome dependency of L and u2 
on N ,  the number of samples. While such niedsures in 
the time domain can be rnade more meaningful by using 
the nrean square successive difference instead o f  c2 as 
a measure of cldck s t a b i l i t y ,  RADAR, microwave spec- 
troscopy and other applicat ions require measures which 
give sideband t o  c a r r i e r  power ra t ios  (frequency domain 
measures). The pr inciples  of such measures and t h e i r  
various advantages and disadvantages wil l  be discus- 
sed. 

INTRODUCTION 

This paper has been prepared a t  the request o f  the program commit- 
t ee  which wished t o  nave the subject  o f  frequency s t a b i l i t y  measures 
emphasized as one of the issues o f  t h i s  y e a r ' s  conference. I t  i s  
therefore proposed t o  review the subject  as an introduction t o  more 
spec i f i c  papers and t o  the pdnel discussion which i s  t o  follow these 
presentat ions.  

There i s  a  considerable amount of writ ten material avai lable  which 
can serve as introduction to our subject .  One of the best  introduc- 
tory coverages i s  given in Rovera's (IEN, 1 9 7 4 )  lec ture  notes. Ap- 
pended i s  a selected l i s t  of original  contr ibut ions .  Two excel lent  
and complen~entary reviews are  the NBS Technical Notes No. 669 ( D .  Allan, 
1975)  a n d  No. 679 (0. Howe, 1976). One cannot e x p e c t  t o  improve upon 
such lucid and exeinplary expositions of the subjec,t. One can only 
attempt t o  present i t  i n  a d i f fe ren t  s t y l e ,  context a ~ d  accent. 

We can divide our subject  according t o  various l ines  of which the 
division short-term vs. long-terrn s t ab i l  i t>y i s  o n l , y  a Illore superf ic ia l  
d ivis ion.  By measurement techniques one can dist inyuish nleasurements 
in the time donlain frorn frequency domain nieasurenients . 3ne can char- 
ac te r ize  s t a b i l i t y  in the tii-lie dorrlain and in the frequency domain. 
Here we would l i ke  t o  e m p h a s i z e  y e t  another d-ichotornv: 



A. Trends, Systemat ic  o r  D e t e r m i n i s t i c  V a r i a t i o n s  o f  Frequency, 

V S .  

B.  Random V a r i a t i o n s  as P a r t  o f  a  Random Process. 

A f a i l u r e  t o  separate  t h e  sys temat i c  v a r i a t i o n s  f rom t h e  random p a r t  
w i l l ,  i n  most cases, a f f e c t  any c h a r a c t e r i z a t i o n  o f  a  c l o c k  i n  a  ve r y  
m i s l ead ing  way (Barnes and A1 l an ,  1964). On t h e  o t h e r  hand, t h e  random 
p a r t  o f  t h e  observed f requency v a r i a t i o n s  o f  a c l o c k  i s  o f  t h e  same 
t ype  as t h e  observed v a r i a b l e s  which a r i s e  f rom many o t h e r  random proc-  
esses. Such da ta  fo rm a  t ime  s e r i e s  which can be i n v e s t i g a t e d  and 
cha rac te r i zed  w i t h  t h e  same methods as have proved u s e f u l  i n  o t h e r  
sc iences.  We t h e r e f o r e  do n o t  have t o  r e - i n v e n t  t he  wheel b u t  can 
s imp l y  app l y  what we can f i n d  i n  t h e  l i t e r a t u r e  o f  Time Se r i es  Ana l ys i s  
e t c .  (Box and Jenk ins,  1970, Jenk ins  and Watts, 1968, Wiener, 1949). 

CLOCK SAMPLING 

Table  1 shows t he  genera l  scheme which we can f o l l o w  i f  we sample 
ou r  c l o c k  e r r o r  x ( t )  a t  r e g u l a r  i n t e r v a l s  h. Such sampl ing i s  t h e  b a s i c  
measurement i n  t h e  t ime  domain. We use a c l o c k  ou tpu t  marker (which 
cou ld  be a pu l se  o r  a s i n e  wave zero c r o s s i n g )  and a  r e fe rence  c l o c k  
" R "  which we assume t o  be p e r f e c t .  The sampl ing o f  t h e  c l o c k  e r r o r  o f  
t h e  t e s t  c l o c k  "T" i s  done w i t h  a  t ime  i n t e r v a l  coun te r  a t  t h e  t ime  t. 

The complement of x ( t )  i s  c a l l e d  t h e  c l o c k  c o r r e c t i o n ,  C ( t )  = - x ( t ) .  
These measurements c o n s t i t u t e  o u r  b a s i c  t ime  s e r i e s  i n  which we des ig -  
na te  t h e  number o f  each measurement as t h e  index  k. 

Table  1 

Index Time Clock E r r o r  F i r s t  D i f f .  Second D i f f .  T h i r d  D i f f .  
k  t=t,+kh x ( k )  v x ( k )  v2x ( k )  v 3 x ( k )  

0 t + O h  x ( 0 )  - - - 
0 



We assume n t 1 rneasurenients ( l a s t  k = n ) .  We use "backward" d i f f e r -  
ences v because t ha t  i s  wha t  we can compute in real time immediately 
a f t e r  a measurement. The symbol may also  be understood as  a l i nea r  
operator t o  be applied t o  a table  entry zk ( c f .  Hamming, 1962) :  

v ( z k )  = Z k  - Z k - 1  

v ( v m ( z k ) )  = vm(zk)  - ~ ~ ( z k - ~ )  

A s imi lar  operator i s  the backshift operator B: 

B(zk) = Zk-1 

We have obviously the following operator equation which i s  t rue  f o r  
whatever argument i s  chosen: 

V = 1 - 6  

(1 i s  t h e  ident i fy  opera to r ) .  A formalism such as ( 5 )  wil l  be used in 
the discussions of the Box-Jenki ns (1  970) approach t o  s t a t i s t i c a l  mod- 
el ing. Let us apply these concepts t o  t ab le  1 where we i n t e rp r e t  the 
m t h  difference a s  a symbolic m t h  power of V .  We use the binomial 

= ( 1  - = 

B r  means t ha t  we apply B r  times. As an example we can write the gen- 
era l  expression f o r  the 3rd difference in our t ab le  1 by multiplying 
equation ( 6 )  with x ( k ) :  

= ~ ( k )  - 3x(k-1) + 3x(k-2) - x ( k - 3 )  
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FREQUENCY 

The average normal ized (re1 a t i  v e )  frequency departure ( e r r o r )  during 
the basic interval  h i s  



I t s  dimension i s  t ime  e r r o r  p e r  u n i t  t ime,  i . e .  i t  i s  a  dimensionless 
( r e l a t i v e )  q u a n t i t y .  I t i s  t h e r e f o r e  g i ven  as p a r t s  p e r  b i l l i o n  e tc . ,  
whereas t he  t ime  e r r o r  i s  g iven  as t ime,  e.g. as microseconds ( p s ) .  
Frequency F, as d i s t i n g u i s h e d  f rom r e l a t i v e  frequency e r r o r  r ( t ) ,  i s  
g iven  i n  cyc les  (o f  2~ rad ians  each) p e r  second (Her tz ,  Hz). The p e r i o d  
P i s  t he  d u r a t i o n  o f  one cyc le :  P = 1/F. Angular  f requency n i s  g iven  
i n  rad ians  pe r  second ( r a d l s )  and we have n = 2nF and 

where $I i s  t h e  phase e r r o r  a t  t he  frequency F. 

Our t i m i n g  waveform i s  always band l im i t ed  s i n c e  i t  comes f rom mate- 
i a l  c i r c u i t s .  Our concept of average frequency may t h e r e f o r e  be 
brought  t o  t he  l i m i t  f o r  a  sma l l e r  and sma l l e r  sampl ing i n t e r v a l  n t  and 
we o b t a i n  t he  concept o f  t h e  instantaneous r e 1  a t i  ve frequency depar tu re  

For p r a c t i c a l  reasons our  b a s i c  sampl ing i n t e r v a l  h  must be chosen 
s u f f i c i e n t l y  l o n g  so t h a t  t h e  Ax can be reso lved  above t h e  no i se  l e v e l  
o f  measurement. Once t h e  measurements a r e  recorded i t  i s  o f  course 
easy t o  choose any m u l t i p l e  o f  h as t h e  averaging o r  i n t e g r a t i o n  t ime  
T I n  t he  genera l  case we have 

where k - , 1 i s  a p o s i t i v e  i n t e g e r .  

Now, i f  ou c l o c k  e r r o r s  would be p u r e l y  d e t e r m i n i s t i c  and i f  they  
f o l l owed  an mtL degree po lynomia l  

which we cou ld  cons ider  e.g. as t h e  beg inn ing  o f  a  T a y l o r  se r i es ,  then, 
accord ing  t o  t h e  fundamental theorem o f  t he  d i f f e r e n c e  ca l cu lus ,  t h e  
mth d i f f e r e n c e  would be a  cons tan t .  By app l y i ng  t h e  ope ra to r  v m t imes 
one can v e r i f y  t h a t  

I f  we use t h e  index  k  as t h e  argument w i t h  h  = 1, then t h e  po lynomia l  
i s  now i n  powers o f  k  



The (m t 1  ) s t  d i f f e r e n c e s  a r e  z e r o .  S ince  (12 )  and ( 1 2 ' )  r e f e r  t o  t h e  
same q u a n t i t y  we a l s o  can see t h a t  

where a; has t h e  d imens ion o f  t i m e  m". B u t  i n  

These e r r a t i c s  w i l l  be m a g n i f i e d  as h i g h e r  d i f f e r e n c e s  a r e  t a k e n  ac-  
c o r d i n g  t o  ( 6 ) .  

These p r o p e r t i e s  o f  t h e  h i g h e r  d i f f e r e n c e s  o f f e r  a  p o s s i b i l i t y  t o  
o b t a i n  i n s i g h t  i n t o  t h e  c l o c k ' s  per formance.  We c o u l d  t ry  t o  f o r m  t h e  
averaqe d i f f e r e n c e  

f o r  success i ve  2, = 1 ,  2, 3 e t c .  u n t i l  we f i n d  a omx(k )  wh ich  i s  n o t  

c o n t a i n  a  s y s t e m a t i c  p a r t  i n  t h e  f o r m  o f  a  p o l y n o m i a l  o f  degree m-1 and 
t h e  c o e f f i c i e n t  o f  t h e  h i q h e s t  power t e r m  wou ld  be 

As an example c o n s i d e r  a  q u a r t z - c r y s t a l  c l o c k  wh ich  can be modeled 

I t y p i c a l l y  w i t h  a  second degree p o l y n o m i a l  f o r  i t s  c l o c k  e r r o r s  

where x '  ( k )  a r e  t h e  r e s i d u a l s .  The t h i r d  d i f f e r e n c e s  w i l l  average 
(show no t r e n d )  c l o s e  t o  ze ro  and we f i n d  f o r  t h e  a g i n g  c o e f f i c i e n t  

f Fur the rmore  i n  t h i s  case one can use a s  a measure f o r  t h e  c l o c k  e r r a t -  



a measure would be wr i t ten3n our terms 

By using the root mean square we obtain a sor t  of higher variance (since 
the average i s  close t o  zero) as i t  has been discussed by Kramer a t  the 
PTB (1 7 ) who called i t  curvature variance. Expressed as  sigma (vari-  
ance we have 

This measure i s  insensitive t o  frequency d r i f t s  and in that  regard 
would be superior t o  the pair variance (two sample Allan variance). 
The pair sigma, which for  good reasons i s  the most popular frequency 
s t ab i l i t y  measure, i s  in our terms 

Formulae (18) and (19) a re ,  in f a c t ,  just  special cases of2the discus- 
sion given by Audoin & Lesage (1975) .  A sample variance oy, f ina l ly ,  
can simply be obtained by averaging the v x ( k )  with a naive determina- 
tion of the standard deviation and squaring i t .  B u t  again, t h i s  i s  
usually a misleading procedure i f  we do  not f i r s t  take off any trends 
in t h e  record ( in  another way of looking a t  the problem th i s  amounts 
to forcing the averages t o  zero in which case, i f  we have a white 
noise process, a l l  of the above discussed mean square measures become 
variances of the same magnitude). 

The simplest case in principle, and a very important one for  con- 
ceptual c la r i f ica t ion ,  i s  the case of purely random y ( k ) ' s .  We cal l  
that  white FM. A cesium beam atomic clock would be an example (typical - 
ly for  r > 10s) since the servo loop error  signal coming from the 
atomic beam tube i s  shot noise fundamentally due t o  the arrival of indi- 
vidual atoms a t  the detector. We should have no trends in th i s  case 
b u t  the random additions of noise produce a random walk in x(t) as i s  
shown in f ig .  1 .  This random walk ( R W )  has neither a stationary mean 
nor a stationary variance in x ( t )  b u t  of course, the differences con- 
s t i t u t e  a normal process by definit ion. This i s  a major reason why the 
- 
y ( t )  play such a large role in comparison with the x ( t )  which are the 
values one measures direct ly .  By using differences one gets rid of n o t  
only systematics b u t  a RW as well. 



An actual clock performance as shown in f i g .  2 (which gives the 
y ( l d )  of Cs 571) exhibi ts  always some systematic disturbances in addi- 
t ion a n d  the clock e r ro rs  are  therefore much la rger .  In addition t o  
a l inea r  trend of t1.5 x p . a .  which has been removed, we see t ha t  
there i s  some obvious corre la t ion in the  frequency res iduals .  I t  i s  
t h i s  tendency of frequency variat ions t o  pe r s i s t  fo r  a  while which 
produces a  dispersion of the time e r ro r  which i s  greater  t h a n  in the 
case of purely random FM. 

I t  will  be c l e a r  a t  t h i s  point t h a t  

( 1 )  The measures of clock performance based on sampling 
( t ab l e  1 )  become l e s s  sens i t ive  t o  long term trends as higher 
differences a re  used fo r  tne analys is .  

( 2 )  I t  would be most des i rable  t o  agree on a standard way 
to  reduce the d a t a  t o  a clock performance measure which i s  
re la ted  t o  the applicat ion o f  clocks ra ther  than t o  a d o p t  
procedures such as those which led to  formulae ( 1 4 )  and ( 1 5 ) .  

The statements ( 1 )  and ( 2 )  a r e  i n  mutual con f l i c t  only a t  f i r s t  s igh t  
because in almost a l l  cases we d o  n o t  need t o  go t o  higher than sec- 
ond differences i f  we take off  any long-term trends f i r s t .  This allows 
us to  s a t i s f y  the requirement ( 2 )  in the most straightforward way. 

A .  Elimination of Trends 

There are  three  main c lasses  of approximating functions which we 
can consider viz.  

( 1 )  Polynomials in t (or  k )  of degree rn, 

( 2 )  Fourier Ser ies ,  
-ai t 

( 3 )  Exponential Funrtions, e  
i  

All of these transform into  another function of the same kind ( they a re  
c lass  conservative) under a transformation t -+ t + k ,  i . e .  we can 
assume t ha t  there i s  no  special origin inherent t o  the problem. If  any 
s ingu la r i ty  i s  present in the record then one c a n ' t  use these functions,  
a t  l e a s t  n o t  fo r  the whole range. In the  case of clock records we a re  
n o t  so much concerned with genuine s i ngu l a r i t i e s .  B y t  of ten we see 
breaks in clock r a t e  d u e  t o  a  spec i f i c  b u t  usually u n k n o w n  disturbance.  
The most natural way t o  handle such cases i s  t o  break the record a t  
these points and t o  use a  pa r t i cu la r  function f o r  the approximation of 
each undisturbed pa r t ,  The simplest case would be the approximation of 
a clock with pieces of s t r a i g h t  l i ne s .  This can usually be done with 
the  y(k). 
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Only class ( 1 )  i s  class conservative also under the transformation 
t -+ k t .  This class i s  therefore of major importance i f  no natural scale 
i s  inherent in the problem. For an extensive discussion of approxima- 
tion with these mathematical functions c f .  Hamming (1962). For these 
reasons clocks have been approximated with polynomials in the over- 
whelming number of cases. Quadratic and cubic polynomials are usual 
for  the y(k) and the x ( k )  of crystal clocks ( the cubic i s  to account 
for  a changing frequency d r i f t  due to aging). For the mathematics of 
polynomial approximation c f .  Jordan (1965) i f  one does not have a 
"canned" computer or calculator program available. 

I t  i s  clear that  by increasing the degree of the polynomial one can 
reduce the variance of the residuals b u t  there i s  an absolutely essen- 
t i a l  point t o  be kept in mind. Any attempt t o  absorb the random vari- 
ations in a mathematical model with a complexity greater than what i s  
necessary for  the elimination of the genuine long-term trend will lead 
t o  completely i l lusory gains. An apparent s l igh t  decrease of the vari- 
ance of the residuals will have been obtained a t  the price of a 
representation of the trends which i s  useless and even dangerous for  
any amount of extrapolation. The same danger exis ts  i f  a c lear  break 
due t o  a real clock disturbance occurs and i s  not recognized as such 
b u t  incorporated into a greater complexity of the clock model. Eighth 
and higher degree polynomials have been used for long term clock model- 
ing instead of breaking u p  the record into pieces which can be f i t t e d  
with a low order polynomial. This i s  fundamentally wrong and danger- 
ous. Similar i s  the principle o f  parsimony (Box & Jenkins, 1970). 

However, the elimination of trends i s  usually extremely simple. 
Of greatest  importance i s  the recognition of breaks or steps in the 
record. In  most cases we will then find a more or less  l inear d r i f t  of 
frequency which can easily be subtracted from the record. I n  some cases 
the elimination of trends i s  a tr icky problem and i t  i s  wise to  be con- 
servative and to  take off only the most obvious overall trend instead 
of trying to  be sophisticated. In that  case one i s  l ikely to  end u p  
with a mathematical model for  the low Fourier frequency components of 
the random p a r t  of the frequency variations. 

Of course, the problem, i f  there i s  any, can always be solved by 
going to  higher differences. Such a f i  1 tering ( lS t  order differences) 
i s  already being done automatically by using frequency instead of phase 
records for  evaluation. This brings us one step closer to  the goal of 
s ta t ionar i ty  which produces stable measures. B u t  th i s  i s  of major 
importance mainly in clock modeling for  purposes of prediction and much 
less  so for  the characterization of performance as needed for specif i -  
cations, testing e t c .  I t  i s  a main benefit of the pair variance that  
i t  uses second differences thereby avoiding most of the problems 
mentioned while s t i l l  giving a n  objective reproducible measure which 
i s  closely related t o  a t  least  one important class of applications. 
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B. Random Process Characterizat ion 

Assume t h a t  we have freed cur record from obvious t rends .  A natural  
question wil l  be whether the  r*?siduals x l ( t )  wi l l  now be purely random 
and/or s t a t i o n a r y .  Pa r t i cu la r ly  the s t a t i o n a r i t y  question has plagued 
the discussions because of 4 nuniber of frequent  misunderstandings. 
F i r s t  we must r e a l i z e  t h a t  no natural  urocess can be assumed s t a t ionary  
in the  sense t h a t  i t s  s t a t i s t i c a l  ireasures are independent of time. 
The universe does n o t  allow any process t o  go on i n d e f i n i t e l y ,  therefore  
l i f e  time l imi ta t ions  and aging phenomena a re  commonplace. S t a t i o n a r i t y  
can only be a property o f  niodels as i t  was pointed out  so emphatically 
by Barnes (1976) and Barnes e t  a1 (1971 ) .  The question must then be 
asked whether a n d  how one can apply s t a t ionary  models. 

Let us consider an example: Fig. 3 gives the  da i ly  frequencies of 
clock 837 a f t e r  removal of a l i n e a r  freauency d r i f t  of - 7 . 2  x l O - I 3  
p . a . ,  in a record of more than 900 days. We can see two types of non- 
s t a t i o n a r i  t y  qu i t e  c l e a r l y :  

( i )  a residual  long-term frequency v a r ~ a t i o n  of systematic 
charac ter  (non-s ta t  ionari t y  of ,) and 

( i i )  an increase + n  the  frequency va r i a t ions  from day t o  day 
(non-s ta t ionar i  ty  i n  aL). 

I f  we r e a l l y  want t o  charac ter ize  f u l l y  the behavior o f  t h i s  clock then 
we must display the record a s  i t  i s  givev in f i g .  3 .  Any other  measure 
of frequency s t a b i l i t v  charac ter iza t ion  cdn only be done by compacting 
da ta .  B u t  t h i s  i s  a  euphemisir:, we ac tda l ly  nlust throw data away. I f  
I say t h a t  a f t e r  d r i f t  removal the san~ple variance 1 s .  1.4 x 
(o = 2 . 1  r 10-17) then t h i s  w ~ i l  g i v e  only a very jeneral idea of the  
overal l  var ia t ions  d n d  i t  wil l  be too pessimistic, f o r  most purposes. 
The day t o  day var ia t ions  a re  r ea l ly  much sma? l e r .  in con t ras t  t o  the 
sample variance which i s  r a the r  useless i n  such a case ,  the  p a i r  sigma 
(corresponding t o  the  two sa r~p le  Al lan var-iarlce) i s  more real  i s t i c a l  l y  
tune t o  w h a t  i s  useful i n  a time keeping app l i ca t ion .  I t  i s  only i 
B ( 1  ) = 4 . 5  x 1 0 - l r .  T h i s  dazum w i l l  be even niorti useful i f  we add 

K t e explanation t h a t  this  i s  an average value,  t h a t  the sigrna i s  b e t t e r  
f o r  the f i r s t  two years of operation and i s  qe t t inq  worse n o w .  There- 
fore  we must a l s o  r e a i i z e  t h a t  the  s t a b i l i t y  measures have a tinie va r i -  
a b i l i t y .  This adds a s ~ y n i f i c a n t  complication t o  the problem o f  s t a -  
b i l i t y  measures. We i n t e r p r e t  our samples as  pieces o f  s t a t ionary  
time s e r i e s  models and we s t a t e  the  model parameters a s  they change 
with the samples which come from l a t e r  dates (when the  clock ages ) .  
Since the samples a re  necessar i ly  l imi ted  l 'n time, o u r  confidence in 
the  s t a t i s t i c s  must be l imited a l so  ( c f .  Lesage a n d  Audoin, 1 9 7 3 ) .  B u t  
there  i s  no point a t  a l l  in i n s i s t i n g  on h a i r s p l i t t i n g  perfect ion which 
i s  of no concern in prac t ice  s ince  we d o n ' t  have perennial clocks.  
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THE AUTOCOVARIANCE AND THE SPECTRAL DENSITY 

As we c o u l d  see i n  t h e  l a s t  example, t h e  f requency  r e s i d u a l s  y t ( t )  
can be c o r r e l a t e d  i n  t i m e  ( f i g .  3 ) .  A p u r e l y  random ( u n c o r r e l a t e d ,  
normal )  process i s  easy t o  c h a r a c t e r i z e  w i t h  i t s  mean M and t h e  v a r i -  
ance 02. A  process w i t h  c o r r e l a t e d  d i s t r u b a n c e s  z(k) can be c h a r a c t e r -  
i z e d  by i t s  sample mean fi (we use t h e  " h a t "  t o  d i s t i n g u i s h  t h e  e s t i m a t e s  
f r o m  t h e  i d e a l  p o p u l a t i o n  parameters) :  

and t h e  au tocovar iance  ( a c v f )  f o r  l a g  u :  

and we see immed ia te l y  t h a t  

The a c v f  i s  t h e  average lagged  p r o d u c t  o f  t h e  d e v i a t i o n s  f r o m  t h e  mean 
and can t h e r e f o r e  be i n t e r p r e t e d  as a  q u a n t i t y  wh ich o r i g i n a t e s  f r o m  
t h e  v a r i a n c e  b u t  wh ich i s  "spread o u t "  i n t o  t h e  l a g  a x i s .  For  any p r e -  
c i s i o n  i n  t h e  e s t i m a t e s  i t  i s  c l e a r  t h a t  n  w i l l  need t o  be l a r g e  and 
i n  genera l  w i l l  be n  > 50. The n o r m a l i z e d  a c v f  i s  known as t h e  au to -  
c o r r e l a t i o n  f u n c t i o n  ( a c f )  p ( ~ )  : 

O b v i o u s l y  t h e  c ( u )  o r  t h e  r ( u )  = ;(u) cannot  be e s t i m a t e d  c o n f i d e n t l y  
f o r  g r e a t e r  l a g s  t h a n  a f r a c t i o n  o f  n  and i n  p r a c t i c e  one shou ld  s t a y  
w i t h i n  u < n /2 .  ( J e n k i n s  and Watts recommend u  < k). Complete ly  

random u n c o r r e l a t e d  d i s t u r b a n c e s  w i l l  have  an a c f  i i i c h  drops t o  zero 
f o r  any u 2 1. I n  c o n t r a s t  we see t h a t  a c t u a l  c l o c k s  show a  q ( u )  

wh ich i n d i c a t e s  s i g n i f i c a n t  c o r r e l a t i o n  f o r  l a g s  o f  many days l f i g s .  4 
and 5 ) .  Indeed t h e  a c v f  o f  IT(:) g i v e s  most o f  t h e  s i g n i f i c a n t  i n f o r m a -  
t i o n  o f  i n t e r e s t  b u t  i t  does n o t  g i v e  i t  i n  a f o r m  which i s  b e s t  s u i t e d  
f o r  f u r t h e r  a n a l y s i s .  Tha t  i s  a v a i l a b l e  i n  t h e  F o u r i e r  t r a n s f o r m  o f  t h e  
a c v f ,  t h e  (one-s ided)  s p e c t r a l  d e n s i t y  o f  t h e  y: 



Since the  S ( f )  and the acvf are  a Fourier transform p a i r  we a l s o  can 
go backwards t o  the acvf once we k n o w  the S ( f ) :  

m 

+y7(u) = / S y ( f ) c 0 ~ ( 2 n f . u ) d f  
I 

A consequence of t h i s  l a s t  formula i s  

X1 

P 

v-(0) = 3 - = : S-(f)df 
Y Y 

C' 
I Y 

which explains S ( f )  as a variance dens i ty  function of Fourier f r e -  
quency. I t s  dimension i s  therefore  variance per Hz. One must n o t  be 
misled by these simple and t ransparent  r e l a t ionsh ips .  S ( f )  i s  n o t  
d i r e c t l y  ava i l ab le  b u t  must be computed from a f i n i t e  sample. This can 
be a t r i c k y  process and Jenkins and Watts (1968) o r  s imi la r  references 
must be consulted f o r  guidance on d e t a i l s .  Figs. 6 and 7 show examples 
of S y ( f )  computed, however, from the  acf which normalizes the  p l o t s  t o  
a a 7  = 1 .  

A special  caveat concerns the r o l e  of T. For each value chosen, 
v-(u)  and Sy( f )  wi l l  be d i f f e r e n t  a s  can be seen from (26)  but a l s o  

Y 
because of the measurement resolu t ion  which changes with I-. The es-  
s e n t i a l  point i s ,  however, t h a t  sampling the  frequency f o r  an in terval  
T corresponds t o  a convolution with a  rectdngular  time window. This 
i s  transformed i n t o  the frequency domain a s  a f a c t o r  

s i n 2 ( . r r f ~ )  
K = - 

('Tf'T)? 
(27) 

so t h a t  the spect ra l  densi ty of h(K) i s  r e z l l y  obtained from the  spec- 
t r a l  dens i ty  of y ,  the  instantaneous r e l a t i v e  frequency depar ture ,  by 
mul t ip l ica t ion  with K :  

S-(f) = S ( f ) - K  
Y Y (28) 

A second f a c t o r  K '  i s  needed i f  we want t o  compute an estimated variance 
f o r  a sample of f i n i t e  data length ,  As explained by Cutler  a n d  Searle  
(1966)  in grea t  de ta i l  ( t h e i r  paper i s  indispensable fo r  a n  understand- 
ing of d e t a i l s ,  unfortunately i t  i s  f u l l  o f  annoying m i s p r i n t s ) ,  sam- 
pling f o r  a  t o t a l  time n.h,  c f .  t ab le  1 ,  a n d  removinq the  d r i f t  a n d  
average (i . e .  our el imination o f  systematics) corresponds t o  a high 
pass f i l t e r i n g  with two zeros and a cutoff  frequency 
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There fo re  t h e  va r iance  i n  such a  sample must be expected t o  be s m a l l e r  
than t he  t r u e  va r iance .  The computat ion ach ieves t h i s  w i t h  t h e  f a c t o r  

and we o b t a i n  

The h i g h  pass f i l t e r  a c t i o n  of K '  can u s u a l l y  ( i f  we have removed t h e  
sys temat i cs )  be approximated by a  low frequency c u t o f f  on t h e  i n t e g r a l  

A method o f  o b t a i n i n g  3 f rom t h e  f requency damain w i t h o u t  sampl ing and 
d i g i t a l  a n a l y s i s  i s  a c t u a l l y  based on t h i s  formula (Rutman, 1974, 
Rutman and Sauvage 1974).  

On t h e  o t h e r  hand if we cons ide r  how we a c t u a l l y  o b t a i n  ou r  es t ima te  
o f  S-(f),  t h e  $-(f), then t h e  s i t u a t i o n  i s  somehow t h e  reve rse  of what 

Y  Y  
we have j u s t  d iscussed.  Data a c q u i s i t i o n  f o r  a t o t a l  t ime  hen c o r r e -  
sponds t o  a  convo lu t i on  o f  t h e  t r u e  S ( f )  w i t h  a  f i l t e r  f u n c t i o n  Q,(f) 
which i s  t h e  F o u r i e r  t r ans fo rm  of t h e  t ime  window ( t h e  Hanning o r  
Hamming e t c .  which we per fqr rn  on t h e  a c v f ) .  There fo re  t h e  t r u e  S ( f )  
d i f f e r s  f rom t h e  es t ima te  S ( f )  which we compute: 

E[S] = S P Q ~ ( ~ )  (B s i g n i f i e s  c o n v o l u t i o n )  (33) 

The e f f e c t  o f  t h i s  i s  a  b l u r r i n g  o f  t h e  d e t a i l s  o f  S ( f ) ,  making i t  
imposs ib le  t o  r e s o l v e  d e t a i l s  f i n e r  than  h f ~ l / n h ~ .  

S ince S y ( f )  i s  o f  such fundamental impor tance f o r  f requency s t a b i l -  
i t y  cons ide ra t i ons ,  t h e  accepted t e rm ino logy  concern ing types o f  c l o c k  
e r r a t i c s  o f t e n  r e f e r s  t o  it. As an impo r tan t  example we ment ion w h i t e  
FM, comp le te ly  u n c o r r e l a t e d  f requency d is tu rbances ,  which i s  charac- 
t e r i z e d  by  a  S y ( f )  = cons tan t  between t h e  p r a c t i c a l  l i m i t s  fL and fh 
g iven  by  r e c o d  l e n g t h  and sample i n t e r v a l .  We have 



This i s  re la ted  t o  the sampling theorem which one must a l so  keep in 
mind in regard t o  the danger o f  a l i a s i ng .  If the sampled process con- 
t a ins  substant ia l  noise a t  or  above f h  then special f i l t e r i n g  i s  ad- 
visable ( c f .  Baugh 1971). 

G E N E R A L  COMMENTS ON THE USE O F  STATIONARY MODELS:  

I 
. .  . 

s ta t ionary then ~ ( u )  i s  an even function and t he -p robab i l i t y  d i s t r i bu -  
t ion  function P ( z )  ( p d f )  i s  time invar iant .  

I only a function of u .  

average u i s  equal t o  the time average zm: 

= z ( t )  = lim 

I f  we have done a su f f i c i en t  j o b  with the removal or  f i l t e r i n g  of  the 
systematics then our averages will remain s t ab l e  regardless o f  which 
p a r t  o f  the record we s e l ec t  f o r  estimating the average: 

wil l  be nearly constant i f  N i s  su f f i c i en t l y  large .  

A large power of S ( f )  a t  low frequencies f i s  typical  f o r  trends 
which have not been removed ( c f .  f i g s .  3 and 7 ) ,  Barnes (1976)  g i v e s  
an excel lent  discussion t ha t  in such cases the experimenter cannot 
make believable s t a t i s t i c a l  est imates.  Many learned arguments about 
what happens a t  f = 0 have siniply overlooked the  f a c t  t ha t  as one runs 
out of data ,  one a l so  loses t h e  , jus t i f i ca t ion  fo r  the use of s t a t i s -  

the higher frequency noise which alone i s  t h e  genuine raw material 
f o r  s t a t i s t i c s .  B u t  there i s  a lso  t h i s  other aspect of t h e  separation. 

by the  nature of the problem ( e . g .  re-synchronization i n t e r v a l ,  or 
time constant in a feedback loop e t c . ) .  Therefore measures, in order 
t o  be useful ,  must have been freed from long term e f fec t s  (Barnes & 
Allan, 1964). 



- I t  was obvious from some of the previous examples t ha t  the actual 
y ( k )  may not be Gaussian d i s t r ibu ted .  If  z be again a representat ive 
random var iable ,  p (z )  the probabi l i ty  density function and P ( z )  the  
probabil i ty d i s t r ibu t ion  function then we have, of course, 

z m 

P(z )  = p ( z ) d z  and / p(z)dz = 1 
J J 

( 37 )  
-03 - (B 

One can p lo t  the  P ( z )  as a function of the magnitude of the deviation 
preferably expressed in uni ts  of 0. Figs. 8 and 9 give an est imate o f  
P(Yld )  of our two representat ive cesium c1oc.k~ 571 and 837. One notes 
the non-normal nature of the e r r a t i c s  of 837. Such plots  seem t o  have 
only very limited usefulness compared with the plot  o f  y ( t )  i t s e l f .  

THE PAIR VARIANCE (TWO SAMPLE ALLAN VARIANCE) 

In our examples which showed actual clock behavior (Cs 571 and 837) 
we could see t ha t  even in t h e  absence of long-term t rends ,  the  determi-- 
niat ion of the estimates of variance ( S 2 )  depends on the number of 
samples taken. I t  was therefore proposed b y  Barnes and All an (1 964) t o  
use N = 2 samples f o r  a variance determination and t o  average over many 
such groups t o  improve the  est imate.  Such grouping produces a variance 
which i s  the l imi t ing case of a sample variance and one idea would be 
to  simply standardize the procedure t o  N = 2.  However, t h i s  pa i r  vari-h 
ance has addit ional  benef i t s .  The general sample variance depends not 
only on the number N b u t  a l so  on any deadtirne T between frequency 
measurements and A1 lan ( 1  966)  introduced the notation 02(N,T,~) f o r  t h i s  

\I 

general sample variance. In our case of x ( t )  sampling he have, of 
course, no deadtime between frequency measurements because we can com- 
pute the Y T = k h ,  c f .  our equation ( l o ) ,  f o r  any se lected sequence of 
measurements. Since the pa i r  variance i s  developed by Allan as the 
l im i t  f o r  N = 2 of the general sample variance, i t  contains a f ac to r  
of 2 in the denominator which i s  the only di f ference from the mean 
square successive difference of 7. The mean square successive d i f f e r -  
ence was used already by von Neumann and others  (1941 ) f o r  the charac- 
t e r i za t ion  of processes with a d r i f t  such as i t  was encountered in 
b a l l i s t i c  t e s t ing .  

Allan has a l so  introduced a variance r a t i o  x (we assume zero dead- 
time: 

u 2 ( N y ~ )  
x(N,.c) = (1 a t e r  a1 so denoted B1 ( N  ,u)) 

0 2 ( 2 , d  



I For purely random noise i = 1 ,  and t h i s  allows a n  easy check f o r  t he  
noise t y p e  present in one ' s  da ta ,  For d e t a i l s  one should consul t  
(1966) b u t  i t  must be k e p t  i n  mind t h a t  the  u t i l i t y  o f  x i s  pr imar i ly  
l imi ted  i n  u s e f u l n e s s  t o  cases where "power law" noises predominate. 
We can see  t h i s  from the following re la t ionsn ips :  

k-n ? -  ,.. 
, , . \ i 

which f o r  la rge  t i  becorrles a ~ ~ r o x i ! * l a t e l y  

I f  ~ ( y )  i s  assumed t o  be zero -then the  :~1.;-, +,errti ~ i l 1  be the  estimated 
variance a n d  the second the  estirnased a c v f  :cv :I 133 o f  1 (which 
i f  expressed in s ) :  

s ince  c ( u )  = r ( u ) b 2  we obtain as a useful approximation f o r  l a rge  
sampl es 

We can see t h a t  A l l a n ' s  variance r a t i ~  can be r e l z t ed  e a s i l y  t o  the  
beginning of the autocorrel  a t i o r ~  &unct ion .  Lons ideriny the  grea t  

I s impl ic i ty  of the concept and the  c o n i p u t a t i o r ~  o C  ( ? 1 ,  ) ,  i f  we r e s t r i c t  
ourselves t o  the  case Y=n a n d  110 deadtitile I +  i~ = d e r y  useful tool i n  
the s e t  o f  the various s t a h i : i " y  measL1res ' ' 1 ~  r l i l  r v a r ~ a n c e  : - ( 7 )  

Y 

I which i s  a shor t  hand n o t a t l o .  f o r  sz(2, 3113 :ruc:rl iWOrC" S O  the pa i r  
\' 

I 
J 

sigma 5 ( r )  have beconie a standard for- fr-'ecluelicy j tabi 1 i ty spec i f i ca -  
V 

t i ons  and ir~easurenlents for  a v e i . ~ ~ i ~ ~ l ~ l  t i ire;  jb5eater than about 1s 
because i t  i s  the  simp'lest quar;ti?, to 11~e(ls[i i .e and i s  r e l a t i v e l y  
insens i t ive  t o  the  choice o f  1eds~irPtrlent 1- t - r l l l~~star~ces.  I t  provides 
an objec t ive  rrieasure even 7 1 1  %tie presence o f  ;olrte si/stematics in the 
record oecause i t  uses s e c o ~ d  ~ { f f e r e r c e s  o T  onase 3 s  we saw in our 

I we-said before a b o u t  t h e  neceskai-;; remova" ,II-' s : ; s t e ~ c i t i c s  . 



An excellent characterization of osc i l la tor  performance can be 
given in the form of sigma-tau double logarithmic plots as shown for  our 
two Cesium clocks 571 a n d  837 in f ig s .  10 and 1 1 .  In the case o f  Cs 837 
we can see the effect  of the systematic variations in an upswing of the 
graph for  1 arge tau ' s .  

MEASURES IN THE FREQUENCY DOMAIN 

Up t o  now we have used the x ( t )  measures as basis for  our perform- 
ance characterization; we operated in the time domain and did or did 
n o t  transform our results also into the frequency domain to  obtain 
S y ( f ) .  However, for  about f > 1 Hz, such measures can also be obtained 
direct ly .  Since we are now dealing with relat ively f a s t  phenomena, the 
problem of removal of the systematics can be easi ly  circumvented by 
phaselocking the osc i l la tors  together. This assures that  + ( t )  and i ( t )  
will only vary around zero. The phaselock loop ( P L L )  can act  as a  f re -  
quency or as a  phasedetector. If the time constant of the PLL i s  TL 
then the error signal will be proportional t o  the phase error  $ ( t )  for  
times T << T L  and proportional t o  $ ( t )  for  r >, TL. We can assume that  
the phase detector i s  operated in i t s  l inear range. A narrow-band low 
frequency spectrum analyzer or wave analyzer i s  used to  scan the PLL 
error signal for  the AC power which i s  contained as a  function of 
( ~ o u r i e r )  frequency f .  We obtain direct ly  the sideband power of the 
phase or frequency variations depending on the choice of the PLL time 
constant. O f  course, the various measures are closely interrelated 
( c f .  table 2 ) .  However, in contrast t o  the long-term measures where 
one prefers Sy(f )  for  the reasons discussed, here S + ( f )  i s  more popular 
because most osci l la tors  are dominated by white phase noise in a  large 
part of the spectrum and th i s  gives a  horizontal l ine  in Sm. Also in 
the applications, phase noise i s  the more fundamental concept and S m ( f )  
i s  more closely related to what i s  measurable in the laboratory. The 
unit of ~ ~ ( f )  i s  again a  variance (now in radiansz) per Hz. The side- 
band power can also be direct ly  expressed as a  ra t io  in terms of the 
(Suppressed) car r ie r  in db .  

Therefore, we see three different  phase-time spectral densit ies in 
use today: S x ( f )  i s  the time error  spectral density which i s  independ- 
ent of the signal frequency F. S + ( f )  i s  the phase error  spectral den- 
s i t y  which increases with the square of F.  Finally, % ( f )  i s  defined 
variously as the  single sideband t o  car r ie r  power r a t io  per Hz in the 
RF spectrum assuming negligible AM. The ra t io  i s  also often given in 
respect to  total  power with l i t t l e  practical difference for  high per- 
formance osc i l la tors .  In the l a t t e r  case one can speak of a normalized 
density measure since the integral over the total  RF spectrum (which 
in f-measure goes from -F t o  +-, since f i s  centered on the ca r r i e r )  



~ ( f )  was used by NBS f o r  sonle titme b u t  there i s  general agreement 
today t h a t  S ; ( f )  i s  more c l e a r l y  defined and more d i r e c t l y  re la ted  t o  
what can be measured with the  usual t e s t  set-up.  For small phase devi- 
a t ions  ((1; << 1 rad)  we :nay use a s  a n  exce l l en t  approximation 

1 
';:'(f) = - 5 (f) 

2 + 
1 A P L L  phase de tec tor  output voltage V p  (we assunle - - can be con- f 

verted in to  the  phase e r r o r  (assuii~ing the  signal  i s  - k e p t 1  in quadrature 
with the reference which i s  assunled noise f r e e )  

where V/rad i s  the  phase detec tor  s e n s i t i v i t y  t o  phase e r r o r s .  The 
variance of 6 a t  the wave analyzer s e t t i n g  f i s  per Hz: 

I f  the  signal  frequency i s  measured a f t e r  a frequency mul t ip l ica t ion  o f  
m times then S .  ( f )  will be i nc r ea sed  by mr ( i t s  dh nieasure will in- 
crease by 20 l h g  n - ) .  

Exarr~ple: Two equal quartz c r y s t a l  o s c i l l a t o r s  with a 5 MHz output 
a r e  being measured a t  25 MHz i'ili = 5 )  and we assur~ie a phase de tec to r  
s e n s i t i v i t y  o f  2V/rad. We measure w i t h  a wave analyzer  of 1 Hz band- 
width a rrns voltage o f  200 n't d t  100 Hz. This wi l l  give f o r  one o s c i l -  
l a t o r  a t  5 MHz a 

?, (100 H z )  = - 140 d b  - 14 d b  - 3 d b  ( 2  osc i17ators)  
= - 1 5 7  db/Yz 

For more d e t a i l s  c f .  Hnwe (1 976) and Shoaf e t  a1 (1973) .  Prac t ica l  
questions a re  discussed by M. Fischer ( t h i s  volume). 



Note: We have used only one-sided spectral densit ies S (with 0 
< f 3. Two sided spectral densit ies S are more popular in theore- - 
t i c a l  work (where f goes from - to  + m r .  We have 

1 
S = - S and 
- 2 

RANDOM PROCESS M O D E L I N G  AND FORECASTING 

Given a white noise process ak with zero mean a n d  (constant) vari-  
ance o: we can ask how a more complicated process Zk such as observed 
in the y(k) of clocks can be simulated on a digi ta l  computer. Box a n d  
Jenkins (1  970) discuss several classes of models: 

a )  The Moving Average ( M A )  of order q i s  given by 

Z k  = a k  + n1 akV1 + 02 a k - 2  -t . . .  + o a 
q k-q (48)  

which can be written w i t h  the aid o f  our operator notatian 

Z k  = O(n)ak  with o(B)  = 1 + 0 , ~  + . . . t 0 9 ~9 

where O ( B )  i s  the MA operator. 

For f i n i t e  q t h i s  process i s  always stationary. 

b )  The - Autoregressive Process of order p ( A R )  i s  

Zk = m Z k - ,  +- . . . t @ p Z k - p  + ak 

which in our short hand becomes 

(I - m,B - .. . - rnp~')zk = ak o r  m ( B ) Z k  = ak (51 

where m ( B )  i s  the A R  operator. The magnitude and sign of the mi 
determines the degree o f  internal correlation of the process and i t  i s  
seen that  a la rge  var ie ty  o f  processes can be obtained since e.g. for  
large i and l a r g e  p o s i t i v e  :i a l o w  frequency component of S ( f )  





b )  When t he  model i s  n o t  adequate, s imp le  v i s u a l  e x t r a p o l a t i o n  i s  
t h e  b e s t  method o f  f o r e c a s t i n g .  

One may a l s o  no te  t h a t  t h e  above approach i s  comp le te ly  e q u i v a l e n t  
t o  t h e  " f i l t e r "  approach as sketched i n  f i g .  12. The c o e f f i c i e n t s  o f  
t h e  d i g i t a l  f i l t e r  (as  w e l l  as t h e  ope ra to r s  @ & o) c o n t a i n  t h e  same i n -  
f o rma t i on  as t h e  s p e c t r a l  d e n s i t y  S ( f )  . However, as Barnes ( 1  976) 
emphasizes, i t  i s  easy t o  go f rom t h e  f i l t e r  and t h e  model t o  S ( f )  and 
t o  a  t ime  domain measure such as ~ " ( 7 )  b u t  t h e  oppos i t e  i s  n o t  poss ib l e ,  

a t  l e a s t  i n  t h e  genera l  case. 
J 

I n  summary i t  must be s t r essed  t h a t  any t h e o r e t i c a l  b a s i s  a v a i l a b l e  
must be u t i l i z e d  f o r  t h e  removal of sys temat i cs  i n s t e a d  o f  b u i l d i n g  
models which a r e  s o l e l y  based on p u r e l y  s t a t i s t i c a l  f i t s .  Th i s  i s  
t r u e  even i f  t h e  t h e o r e t i c a l  i deas  a r e  most genera l  which may s t i l l  be 
s u f f i c i e n t ,  e.g., t o  e x p l a i n  t h e  p u z z l i n g  f l i c k e r  n o i s e  ( c f .  P e r c i v a l ,  
1976 ) .  

Models have an impo r tan t  p l ace  i n  d i agnos t i c s ,  s i m u l a t i o n  and sys- 
tems o p t i m i z a t i o n .  I n  t h i s  regard,  Box and Jenk ins (1970) a l s o  d i s -  
cuss t h e  e s t i m a t i o n  o f  a  system's  t r a n s f e r  f u n c t i o n  f r om  an a v a i l a b l e  
model . 
CONCLUSIONS AND RECOMMENDATIONS 

I n  o r d e r  t o  o b t a i n  sound measures ~f c l o c k  performance i t  i s  nec- 
essary  t o :  

a )  S p e c i f y  t h e  c o n d i t i o n s  o f  measurement such as fh, t h e  systems 
bandwidth; n, t h e  number o f  measurements; F, t h e  f requency o f  t h e  s i g -  
n a l ;  T, dead t ime  i f  any, i n  t h e  case o f  f requency measurements; t h e  
exper imenters  t r u s t  i n  t h e  r e s u l t s  i f  n o t  expressed as con f idence  
based on n; t h e  env i ronmenta l  cond i t i ons ,  e t c .  

b )  Remove any obv ious sys temat i cs  such as d r i f t s  and s t a t e  them 
sepa ra te l y  be fo re  t h e  random p a r t  o f  t h e  c l o c k  performance ( t h e  e r r a t -  
i c s )  i s  analyzed. F a i l u r e  t o  do so leads  t o  unnecessary comp l i ca t i ons  
and o f t e n  t o  erroneous r e s u l t s .  

c )  Determine and s t a t e ,  i f  poss ib l e ,  t h e  env i ronmenta l  s e n s i t i v i t y  
i n  c o e f f i c i e n t s  o f  s e n s i t i v i t y  t o  pressure,  temperature,  v i b r a t i o n ,  
a c c e l e r a t i o n ,  magnet ic f i e l d ,  e t c .  

d )  S t a t e  t h e  c l o c k  e r r a t i c s  i n  t h e  same language ( t i m e  o r  f requency 
domain) i n  which t h e  needs can be i d e n t i f i e d .  A convers ion  i s  p o s s i b l e  
b u t  p rob lemat i c ,  p a r t i c u l a r l y  f rom t ime  domain t o  f requency domain. 



For the  important case of power law s p e c t r a ,  conversion can be 
accomplished by means of Table 2 .  S t a t e  any observed time dependency 
of the  s t a t i s t i c s .  

2 
1 ) Time Domain. The two sample A 1  lan variance u , , ( T )  (or ra the r  ' J 

the  "pa i r "  sigma D ( T ) )  has become a de  fac to  standard.  A double log 
Y .  

plot  of a , , ( r )  contains most of t h e  information of possible i n t e r e s t  in 
t imekeepiig.  The prac t ica l  range i s  f o r  r > I s .  

2 )  Frequency -- Domain. For I- 1s i t  i s  general ly e a s i e r  and 
more r e l i a b l e  t o  determine Sm(f) d i r e c t l y  with a phase detec tor  and 
wave analyzer .  ~ ( f )  which i s  often used, i s  a p r a c t i c a l l y  equivalent  
measure; i t  "looks b e t t e r "  f o r  a given o s c i l l a t o r  by 3 d b .  S + ( f )  i s  
the  recommended measure. 
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APPENDIX 

The Var ious Uses o f  Spectrum Analyzers  

The o u t p u t  s i g n a l  o f  a s tandard f requency genera to r  can be w r i t t e n  
as a  t ime  v a r y i n g  vo l t age :  

V ( t )  - - ~ ( t )  s i n  [ a  t + $( t ) l  t . 
+ =  S 4 d t  

RF Spectrum A.  AM De tec to r  Phase De tec to r  FM De tec to r  

J .1 J- 
1 Wave Analyzer  Wave Ana lyzer  Wave Ana lyzer  

Notes: The c e n t e r  o f  S R F ( f )  w i l l  be a t  f = F. (ZTF = n) 

The wave ana l yze r  scans f rom f = 1Hz up t o  about  100 kHz i n  
most p r a c t i c a l  app l  i c a t i o n s .  
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