


i s  that of specifying and selecting accurate  and stable frequency 
generators  for use in the implementation of r ada r ,  communication, 
navigation, and t ime service systems.  Certain 
u s e r s  of frequency generators  have had t o  face, for the most  par t ,  
the deleterious effects which oscil lator instability produces upon 
sys t em performance by "seat -of-the -pants ' I  engineering. At the same  
t ime the u s e r s  of frequency generators  frequently a s k  the question: 
What a r e  the stability requirements  of the frequency genera tor (s )  
needed in  a part icular  application? 

In fact,  it  appears  at  present  that those involved with the process  of 
manufacturing atomic t ime s tandards,  and electronic t ime 
bases  have been largely concerned with the characterization of oscil la- 
t o r  instability f r o m  the viewpoint of developing accurate  and stable 

clocks [I], 121, . [3]. - This working group has measured the stability 
of oscil lators and compared the measurements  with frequency stability 
measures  [11 , [2] and suggested mathematical models [11, [2], 141 of 
the oscillator. On the other hand, s ta t is t ical  communication and 
r ada r  theoris ts  [51, 161, for  the most  par t ,  have been developing 
mathematical rnodkls for  communication, r ada r  and tracking sys tems 
by assuming the availability of ideal  (perfect sine wave) frequency 
generators ,  The net resul t  of these disjoint ventures, see  Fig. 1, 
i s  that not enough emphasis has been placed upon determining how 
oscillator instability degrades sys t em performance measures  o r  how 
the frequency stability measures  proposed in  [11, €21  can be used to  
a s s e s s  performance. Present ly,  there  i s  a r e a l  need for this in the 
design of current  sys tems and planning of advanced systems.  

This s ta te  of affairs ,  see Fig .  1, is not uncommon to find in many 
scientific fields where theory, manufacturing and pract ice a r e  deve - 
loped and used by widely dispersed workers.  At the present  the authors 

feel  that t k r e  i s  a lack of understanding among the use r s  pertaining to the 
differences between oscil lator phase instability and frequency instabil-, 
ity. There  i s  a l so  a lack of understanding of how to  use accepted 
frequency instability measures .  To some engineers,  phase and 
frequency instability imply the same  concept; consequently, one of 
the main purposes of this paper i s  t o  offer a unified mathematically 
characterization of phase instability (t ime-base j i t ter)  and frequency 
instability (frequency-base j i t ter)  of a n  oscil lator and demonstrate the 
degree of sameness of the two concepts, the i r  interconnections with 
frequency stability measures  [I] ,  . .  [21, - and present  mathematical 



*I, 

" 'Becausc of theiy applications, they a r e  called stability functions in 
the abstract .  



Next ,  we show the important role which the power spectral  density 
(PSD) of the oscillator frequency process  plays with respect t o  
severa l  user  applications and emphasize (via theory) that it is the key 
element which i s  needed to access  the deleterious effects which 
oscillator instability has on the performance of modern communi- 
cations and tracking systems. In other words, we show that the PSD 
of the short t e r m  frequency instability is needed in order  t o  define 
appropriate I-domain sys tem performance measures .  For  the 
engineer involved in the de sign of communication and tracking systems,  
i t  appears  that the most important T -domain performance measure  i s  
not always the r m s  fractional frequency deviation o r  the Allan vari-  
ance but is application and performance measure  (bit e r r o r  probability, 
range o r  range-rate  accuracy, etc. ) dependent. Various sys tem 
performance measures  for use r s  a r e  presented in order  to  support 
this statement. 

On the more  controversial  side,  the authors provide discussions which 
lead to  cer tain questions regarding the interpretation of the so-called 
r m s  fractional frequency deviation a s  a measure  of frequency in- 
stability; rather  the authors feel that i t  is a measure  of phase instabil - 
ity (time-base j i t ter)  of an  oscillator and give an  interpretation to 
support this.  On the other hand, the two-sample Allan variance has a 
direct  interpretation in t e r m s  of frequency instability (frequency-base 
j i t ter)  and, a s  such, provides a measure  of the frequency instability 
of an oscillator. Use of these two measures  then motivate a mathe- 
matical manipulation that shows that frequency and t ime a r e  not 
reciprocally related for real world oscillators,  User applications 
of the two measures  a r e  given in the sys tem context in  order  t o  offer 
support for the proposed interpretation and their  use C ~ O ] ,  [111. 
This i s  accomplished by presenting performance measures  for rang- 
ing, Doppler and coherent communication systems in t e r m s  of 
s t ructure functions of oscillator instability, Finally, we character ize 
oscillator instability in t e r m s  of SFs of the R F  oscillation and show 
the problems which a r i s e  when one attempts to use the R F  domain 
for direct measurement: of oscillator instability. 



2.1 SFIS of the  PJLl1 Lnc re rne~~ t  of the  Phase and Frequency  Noise  
P r o c e s s  

Let us  consider  tlne radian f requency p r o c e s s  P ( t )  of an  osc i l l a to r  

w h e r e  u, = 2vf, is  assumed t o  be  t he  constant  mean  frequency,  the  

$ (t) i s  a s ta t ionary,  z e r o  m e a n  r a n d o m  p r o c e s s  used t o  cha r ac t e r i z e  
t he  sho r t  t e r m  osc i l l a to r  instabil i ty.  In tegrat ing (2. 1 )  from 0 t o  t ,  
w e  have t h e  osc i l l a to r  phase  no i se  p r o c e s s  

- 
Long T e r m  Phase Instability 
P h a s e  Drift 

t h 
Cons ider  now the N inc rement  of :lS ( t )  defined r ecu r s ive ly  by 

I 
Ix 

where  T = ( T ~ ,  T , . . . , T ) i s  a k-dimensional  vec to r  p a r a m e t e r  and - a ,  k 
hll,  it:^. ) = u ( t t ~ ,  )-%!(ti which is s la t ionarv.  F o r  1 he  DurDose of our d is  - 



sided PSD of the process  j (t), then [lo1 

where 

for  n 2 1, F o r  M > N, (2.5)  reduces to  

s t  
Analogously, the (N - 1 ) SF  of frequency instability sat isf ies  

where 

b) n 2 
$ - 
2 J sin (wrk/2)S* ( ~ ) d w  D a ( 7  1 = 2n  

- k=l J I  

for n 2 1.  F o r  M 2 N, then 

Equations (2.5)-(2.10) a r e  important in seve ra l  respects .  F i r s t  of a l l ,  
i f  we take high enough increments ,  the corresponding SF i s  independ- 
ent of the drift  effect. This is evident from (2.7) and (2, l o ) ,  Second- 
ly, we note that the usual convergence problem associated with 
uflicker"-type PSD can be  avoided i n  the T-domain. F o r  example, 
suppose S ( w )  behaves like 1 d-"wi thv  2 1  a s  w + 0. For  a fixed 

2 vector - T"! the quantity fi sin ( W T  12) i s  proportional to wZn for  1.1 
k= 1 k 

small. So, as long a s  v 4(2n-1)  the expression far  ~ ( ~ ' ( 7 ~ )  i s  finite. 
Similarly, D ? ( T ~ )  i s  finite if v < (Zn+l). Hence, besides cornbatting 

4 - the problems associated with the long t e r m  frequency drift,  the S F  
approach i s  useful in t reat ing "flicker"-type noise. An interesting 
example demonstrating these points i s  given in  [91 . Thirdly, notice 
that a l l  SFs  a r e  character ized in  the T -domain via the PSD S- (b). 

fi 



Equat ions  ( 2 . 6 )  and (2 .9)  can  be inver t ed  f o r  S* (%I )  using Mel l in  t r a n s -  
$ forms [lo]. In p a r t i c u l a r ,  t he  P S D  S,;, ( W )  can be evaluated  via 

(2.11) 

where the  Mel l in  t r a n s f o r m  of the function f ( .  ), R i s  given via f 

1 - q- [ a  ] i s  t h e  one-dimensional  i n v e r s e  h4ellin t r a n s f o r m  (with i n v e r s e  
t r a n s f o r m  var i ab le  W), 777 i s  ) i s  t hc  one-dimensional  Mel l in  t r a n s -  

=k 
k 

f o r m  of t h e  functions 

and P ~ ( ~ ~ )  i s  t h e  n -d imens iona l  Mel l in  t r a n s f o r m  of the function 

Al ternat ive ly ,  

whe re  now 

Unfortunately,  taking the  i n v e r s e  Mcll in t r a n s f o r m  i n  (2 .  11 )  and (2. 1 3 )  
is difficult i n  g e n e r a l  and n u m e r i c a l  techniques  m a y  be  needed. 
F o r  small n and r l  =. . . = T a di f ferent  method f o r  inve r t ing  (2 .  5 )  
and (2.8) was p resen t  ed i n  y$l. F i g u r e  2 surntnarizes r -domain  
l o  f -domain  and f -domain  t o  .--domain t r a n s f o r m a t i o n s  which a r c  
possible by e i t h e r  of the two a p p r o a c h e s .  

SFs of t h e  f r equency  p r o c e s s  9 and  p h a s e  p r o c e s s  P of an osc i l l a to r  
a re  fundamenta l  t o  def in i t ions  o r  f r equency  s t a n d a r d s  involvi.ng 
o s c i l l a t o r  ins tabi l i ty .  In t h e  following, we  give new i n t e r p r e t a t i o n s  t o  



the recommended definitions [I], [2] of instability in t e r m s  of the 
theory based upon s t ruc ture  functions. In particular,  we discuss the 
conditions t o  be imposed on the phase o r  frequency process  in order  
to  attach meaning to the r m s  fractional frequency deviation and the 
two - sample and L-sample Allan variance. 

2.2 RMS Fractional Frequency Deviation 

F o r  the r m s  fractional frequency deviation to make sense the radian 
frequency process  i ( t )  has to  be modeled a s  a constant W plus a 

0 stationary frequency component I/I ( t)  whose P S D  is wel l  behaved near 
w 0 i . . ,  S ( W ) ~ ,  1 .  Then, 

i s  the expected value of the square of the  phase accumulated in T 

seconds. The t rue  r m s  fractional frequency deviation defined by 
Cutler-Searle can be expressed in t e r m s  of the f i r s t  phase s tructure 
function a s  [ 9 ] "  

Furthermore,  the statistical average of the measured r m s  fractional 
A 

frequency deviation, say Af(7) Ifo, as found using frequency counted 
data, is easily shown to be an  asympotically unbiased estimator of 
~ f ( ~ ) / f  . The measurement bias  is expressed in t e r m s  of the f i r s t  
phase !!F via 

2 . 3  The Allan Variance 

F o r  the two-sample Al lan  variance t o  yield a precise meaning, the 
frequency process  $( t )  must be modeled a s  a linear frequency drift  
t e r m  and if llflickerll-type noise i s  present S =  ( W )  must behave like 
I ~ \ - ~ f o r  v < 3 near  W =  9, Then 4' 

:::In the original definitions for r m s  fractional frequency deviation and 
Allan variances [I], [2], t31,  the t ime average, instead of the present 

ensemble average, was employed. However, in order  to  fully exploit 
various resul ts  on stochastic processes  in  the l i terature,  the ensemble 
average i s  used in what follows. Notice that both averages a r e  equi- 
valent i f  ergodicity holds. 



i s  the expected squared fractional deviation of the average frequency. 
2 The two-sample Allan variance E{O ( 2 ,  7 ,  .r)] with ze ro  dead t ime 
A 

between measurements  can be written a s  191  

2 
Except for  a factor of % and the normalization constant ( w ~ T )  , the 
two-sample Al lan  variance is exactly the second phase s t ruc ture  
function, W e  also note for sma l l  7 that the average in (2.17)  i s  
related t o  the instability of the frequency process ,  i. e., derivative 
of the phase process .  

I 

If the frequency process  @ ( t )  does not have any drift  and S -  ( w )  behaves 
like 1 w 1-'J for v < 3 ,  then the L-sample Allan variance ~ 2 1 :  [ 3 ,  eq. 41 
i s  

The L-sample Allan variance i s  not related t o  the two-sample Allan 
variance i n  a simple way, but ra ther  it is an asymptotically unbiased 
est imator  of the rrns fractional frequency deviation squared provided 
the la t ter  i s  well defined. The est imator  bias i s  expressed in t e r m s  
of the f i r s t  phase S F  via 

2 .4  Relations hip R etween RMS Fract ional  Frequency Deviation and 
Allan Variance 

If the assumptions regarding the frequency process  $ ( t )  in Section 2.2 
hold, then the two-sample Allan variance and the rrns fractional 
frequency deviation fo rm a one-to-one correspondence via 



The equation can b e  inver ted t o  yield 

In addition, the  L - sample  Allan var iance  i s  re la ted  t o  the  rms f r a c -  
t ional  f requency deviation via 

Provided ~ ( ~ ' ( 7 )  <* for a l l  T, then for  l a r g e  L we see that the  L- 
sample  ~ l l k  var iance  converges  to  the mean  squared  value of the 
f ract ional  frequency deviation. The au thors  bel ieve that  these facts  
have not been recognized in  previous  studies.  

In addition, t he se  re la t ionships  allow us to  identify the b i a s  [12, eq. 151 
function x(L)  a s  

and i f  ' ( 7 )  < m  fo r  a l l  T, then f o r  l a r g e  L , 
'4 

111. INTERPRETATION O F  OSCILLATOR INSTABILITY MEASURES 

3.1 P h a s e  (Time)  and Frequcncy  Instability 

In charac te r iz ing  the  pe r fo rmance  of an  osci l la tor ,  i t  is of funda- 
menta l  i n t e r e s t  t o  dist inguish between the  notion of "instability1' and 



' f i rec is ion"  of its f requency a s  well  a s  i ts phase .  While i t  is  re la t ively  
ea sy  (and unambiguous) for  onc t o  a g r e e  upon a definition of the 
ttprecision" of a r andom quantil y in  t e r m s  of, pe rhaps ,  the  deviat ion 
f r o m  i t s  mean  value ( the  re la t ivc  e r r o r ) ,  t h e r e  i s  no gene ra l  ag r eemen t  
of what "instability" means .  In what follows, we sha l l  t ake  "instability" 
to rncan ins tab i l i ty  with r e spec t  ' 0  the pa s sage  of t ime ,  i. e . ,  how a 
s tochas t i c  quantity behaves  ( i n  a probabil i ty s e n s e )  re la t ive  to  i t s  past 
T seconds  e a r l i e r .  F o r  example ,  a n  osc i l l a to r  which emi t s  a f requency 
that  does not change with r e spec t  to  t ime  i s  a "stable" osc i l l a to r ;  the 
f requency i t  gives at  any pa r t i cu l a r  instant  is  "p r ec i s e  ' I .  Using t he s e  
notions,  we shal l  a t tempt  t o  i n t e rp r e t  the  t-rleanings of phase  ins tabi l -  
ity. Conventional m e a s u r e s ,  i n  pa r t i cu l a r ,  the rms f rac t iona l  f r c -  
quency deviation and Allan var iance ,  wil l  serve a s  the b a s i s  for  our  
int e rp re ta t ions .  

To fo rma l i ze  the  following discuss ion,  w e  sha l l  a s s u m e  the ins tantan-  
eous phase  and frequency of thc  osc i l l a to r  sa t i s fy  

t )  = $ + ? ( t )  
0 

I where  l. ( t )  is s ta t ionary with f ini te va r iance  and ET: ( t ) l  = ~ { : r ( t ) ]  = 0. 
Under t he se  assumpt ions ,  the ins tabi l i ty  m e a s u r e s  t o  be  d i scussed  a r e  

I a l l  well-defined quanti t ies.  

The ins tantaneous  phase  ( t i m e )  instabil i ty of the  phase  noise  p r o c e s s  
+(t)  i s  m e a s u r e d  by the  inc rement  A " : ( t + ~ )  - I ( t )  while the  r m s  

~ i ~ u s  tho r rns  f rac t iona l  phase  ins tabi l i ty  i s  m e a s u r e d  by ,'TI 
f requency deviation i s  rclalc2d t o  t he -phasc  instabil i tv via ( 2 .  15 ) .  On 

while thc  rrns f requency instabilil  y i s  measu red  13v ,h[' '(ri. 7 hc 
2 two-sample  Allan va r i ancc  approx imates  )(T) 121;- with an e r r o r  

For  a PSD S j , ( o )  with power concentrated i n  the f requency region 
C 



Thus the two-sample Allan variance is a measure  of frequency instabil- 
i ty of the oscillator. Table I s e rves  t o  summarize  the resul ts .  

F r o m  (2.14), (2.15) and (3 .  I ) ,  it  is obvious that the r m s  fractional 
frequency deviation Af(r)/f is an instability measure  of the phase 
process  Q o r  the accuracy ?relative e r r o r )  of the phase increment 
A @  = @,-@. Now the frequency accuracy is related t o  If 

0 ' (2, 1 5 )  i s  used a s  a measure  of frequencyprecision, the e r r o r  intro-  
duced in  interpreting (2.15) a s  a measure  of frequency precision i s  

A 
where s inc(x)  = sin x/x. The severi ty  of the e r r o r  in this interpreta-  
tion de ends on the shape of So ( w )  weighted by the weighting function ;P 1 -s inc (UIT 12) .  

$ 

3.2 Normalized Time Instability Times  the Frequency Instability a s  a 
Measure of Oscillator Instability 

Depending on specific applications, osci l la tors  a re  used a s  re ferences  
for making t ime (phase) measurements  as well  a s  in  frequency 
measurements ,  Since frequency instability i s  fundamentally different 
f r o m  phase instability, i t  s eems  only fa i r  to  specify the performance 
of an  oscil lator i n  t e r m s  of both i t s  frequency and phase instability 
in  the measurement  ( T )  domain, F o r  this purpose, w e  can define 
frequency instability b f ( r )  t o  be the r m s  change in  frequency over the 
observation time T, through 

A 
6 f ( r )  = 

2~ g v ~ ~ f o J ~ w  (3.6) 

On the other hand, the time-instability bT(7)  can be defined as the rrns 
change in  the "time" (see (3.11 ) )  from i t s  mean T, via 

bT(,) O (3.7) 
d w  

0 
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The locus of the point ( b f ( ~ ) ,  ~ T ( T ) ) ,  a s  a function of the observation 
t ime 7, could s e r v e  a s  the overal l  stability performance guide of an 
oscil lator and is depicted in  F ig .  3. 

The product: frequency instability t imes  t ime instability 

( 3 . 8 )  

of an oscil lator se rves  a s  a parameter  by which various oscil lators 
can be compared for  a given frequency ofoscillation and a given 
observation t ime T. In F ig ,  3, this  parameter  a t  T = T is  equal 

1 
t o  the a r e a  of the shaded area. F o r  a n  ideal oscil lator then 

for a l l  7 .  Thus any oscil lator,  which is t o  be used a s  a standard in i* 
stability measurements ,  should appear  to  the oscil lator under tes t  to  
satisfy ( 3 . 9 )  a l l  T of interest .  Moreover, i f  we use (3.4) to  
approximate I) by the  Allan variance then we can wri te  

rms Frequency- I 
Base Instability & 

-.. 
(3.10) 

Allan 
rrns Fract ional  

Variance 
Frequency Deviation 

r m s  Time-Base 
Instability 

This equation supports our ea r l i e r  c laim that the Allan variance i s  a 
measure  of oscil lator frequency instability while the r m s  frequency 
deviation is a measure  of oscil lator phase ( t ime)  instability, The 
authors believe that the above construction has  provided insight into 
the meaning of the Allan variance and the rms fraction frequency 
deviation. 

To  gain fur ther  insight into the.se performance measures ,  let us 
a s sume  that the random process  f ( 7 )  4 A$ ( T ) / z ~  and T ( T )  A A $ ( T ) / ~ o  

a r e  jointly Gaussian. If the process  $ ( t )  is  stationary, it can be 
shown that A I) ( T )  and A $ ( T )  a r e  uncorrelated. Hence f(7)  and T ( T )  a r e  
uncorrelated Gaussian p rocesses  with zero  mean and standard 
deviations bf(7) and bT(7). If we plot the contour of constant prob- 
ability density a s  a function of T a s  in Fig. 4, we observe the effect 
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systems that rely on the oscillation. The utility of SF'S will now be 
demonstrated in t e r m s  of a number of use r  applications. It 
shal l  become evident that, in every application, the PSD S' ( w )  of the @ stationary frequency noise i s  the  key to predicting performance 
due t o  oscillator instability. Only a summary account is given herein; 
detailed analytical developments a r e  anticipated in future ar t ic les .  

4.1 Effect of Oscillator Instability on Phase-Locked Loop (PLL) 
Tracking 

One interesting application of SF'S i s  found in studying the tracking 
behavior of a PLL. In addition t o  a f i rs t -order  statistical character-  
ization, i. e ,  , the phase-er ror  variance, the f i r s t  S F  of the phase 
e r r o r  is a lso  an  important performance measure  of a tracking loop. 
It i i s  important in  assess ing  the effect of oscillator instabilities on 
tracking performance and it i s  related t o  the average hold-in t ime of the 
PLL. 

As  an  example, it was shown in [ l o 1  (assuming the loop bandwidth i s  
sma l l  compared to 7, i. e., W L ~  1) that the f i r s t  phase-er ror  SF of 
a f i r s t -order  loop due to  oscillator instability i s  given by 

where cp is the loop phase e r r o r ,  repscscnts  the phase noise on the 
t ransmit ted oscillation and 92 represents  the  phase noise process  
produced by the frequency generation in the receiver .  Notice that in 
this case,  the phase instability measure  (3.7) of the oscillators a r e  
the quantities of interest  in predicting the ability of the loop to t rack  
the input process  in the presence of oscillator phase noise. 

4 .2  Effect of Oscillator Instability on One-Way and Two-Way 
Doppler Measurements 

In a pract ical  Doppler measurement system, the Doppler information 
i s  usually extracted f r o m  the local phase est imate increment A ~ ( T )  
generated by the receiver  PLL. For  one-way Doppler measurements ,  
the e r r o r  contribution due to oscillator instabilities can be shown to be 
contained in the equation 



where  @ denote the e r r o r  in the local phase estimate,  represents  
e I 

the t ransmi t te r  oscil lator instabilities, $, represents  the receiver 

I 
I F o r  two-way Doppler measurements b], the situation is more  com- 

plicated. The f i rs t  S F  of the e r r o r  in the local phase estimate due to  
oscil lator instabilities i s  given by 

where  $0 represents  the t ransmi t te r  oscil lator instability, r ep re -  
sents the vehicle receiver  VCO instability and b 2  represents  the  
ground receiver ,  VCO instability, and $ 3  represents  the ground 
receiver  reference instability [51. 
In the case that: (1) the t ransmi t te r  and receiver  reference signals 
a re  derived f r o m  the same timing source and ( 2 )  the s ta t ic  phase gain 
and the receiver  fi l tering can bc neglected, then the e r r o r  contri-  
bution due to  the refercnce oscil lator instability '!: =$ =t alonc i s  
D ~ ) ( T ,  T )  which i s  explicitly ( see  ( 2 . 6 ) )  

0 3 

where T is the round-trip delay t ime  of the signal. Hence we s e e  that 
the second SF  of the phase noise i s  the important quantity to  specify 
thkgerformance  of the reference oscillation. It can be shown that 
D(  ( 7 ,  T )  i s  related t o  the two-sample Allan variance with non-zero 

I dead 4' t ime T-T  between measurements  EL-2 ( 2 ,  T ,  r ) ]  via 

I Under the same assumptions,  i f  the Doppler frequency shift is 
derived f rom the loop frequency estimate,  the e r r o r  contribution 
f r o m  the oscil lator instabilitY~!is dl)(r). In this case,  the f i r s t  S F  of 
the frequency noise process  of the r e fe rence  i s  the instability meas -  
ure of interest ,  



In one-way ranging, the vehicle t ransmi ts  a ranging signal to  the 
tracking station. Range f r o m  the tracking station to  the vehicle can 
then be determined f r o m  a measurement  of the  local ahase  est imate nf 

introduced in the range est imate due to  oscil lator instabilities alone is 
related to  the variance in  the phase est imate e r r o r  

where 

and (I represents  the t ransmit ted reference instability, represents  
2 

the receiver  VCO instability, I) represents  the receiver  reference 
3 

instability and H (jbll) i s  the receiver  PLL closed-loop t ransfer  function. 
cp I 

In two-way measurements, a ranging signal is t ransmit ted to  the 
vehicle to  be t racked and i s  returned by i t  to  the tracking station. 
Range is then determined f r o m  a measurement  of the phase of the 
returned tone relative to  a reference (possibly the samz one as the 
original t ransmit ted tone). The uncertainty introduced i n  the e r r o r  in 
the phase est imate due to  oscil lator instabilities alone is related t o  the 
variance of the phase est imate e r r o r  

where the 0 ' s  a r e  defined by expressions s imi l a r  to  (4.6) .  Here qO 
represents  the instability of the t ransmit ted signal, represents  
the  vehicle transponder VCO instability, @ , represents  the receiver  



If t hc  effect of t he  P L L t s  a r e  neglected and t he  t r ansmi t t ed  tone and 
thc  r e f e r ence  tone a r e  der ived f r o m  the  same osci l la tor ,  then the  
e r r o r  contribution t o  the  r a n  c m a s u r e m e n t  due t o  t he  oscillator 
phase noise : i s  re la t  d t o  D:')(T) whe re  T i s  the  round-t r ip  path 
delay. Notice that  D!fi(Tl i s  propor t ionate  t o  t he  r m s  f ract ional  
frequency deviation. 

If t he  phase  e r r o r  of the PLL i n  the  t racking stat ion i s  used t o  m e a s u r e  
r ange - r a t e  via h * g ( c ) / -  or  $. exprcss ions  s i m i l a r  to  (4. 7)  and (4. 8 )  can 
bc obtained i n  t e r m s  of the  appropr ia te  quanti t ies.  

4.4 Effect  of Osci l la tor  h s t a b i l i t y  on coherent C,ornrnunication 
Sys tem Pe r fo rmance  

In digital  comrr~unication sy s t ems ,  the  bit e r r o r  probabil i ty [61 i s  a n  
important  pcrforznsrlce m e a s u r e  and i s  re la ted  t o  the  s ta t is t ics  of a 
random var iable  which depends upon [ill the phase  e r r o r  tp and i t s  

p\ inc rement  ~ $ 7  = !lc(T). Then the of e r r o r  wil l  depend upon 
the  instabil i ty and the accu racy  of $. The f i r s t  S F  D!')(T) g i v e n  by 
(4.1) becomes the  important  parameter in determining t he  bit e r r o r  
probability. The effect of thc osci l la tor  ins tabi l i t ies  then e n t e r s  into 
the bit e r r o r  probability evaluation through, for example,  (4.1 ) and 
the re fo re  can be  used t o  se lect  f requency genera tors  fo r  s y s t e m  
implementation.  

4. 5 Application of SFs i n  Studying T'ilning Standards [9] 

Ln t i ~ n i n g  s tandards ,  it is important  to specify  the instabil i ty ,I ( t )  a s  
wc l l  a s  t he  drif t  t e r m  as  i n  (2.1).  The usc of SF 'S  provides a con- 
venient means  for  s u c l ~  m e a s u r c ~ ~ ~ e n t s .  The  scheme i s  f i r s t  to  work  
wi th  succcs  sively higher incrcrrients until  thc dr i f t  p rob lem and the  
s ingular i ty  p r o b l e ~ n  assoc ia ted  with l l f l ic l<cr l l - type PSD axe  al leviated.  
The "measured"  SF 'S  will  then be  irlvertcd via (2 .  11)  o r  (2. 13 )  t o  
gct an es t imate  f o r  S: (a). h f t c r  obtaining th is  es t imate ,  one can 
design a11 opt imal  est i lnation procedure  t o  evaluate the  dr i f t .  An 
example  of such an  approach w a s  discussed i n  197. 

4, 6 Mis  ccllaneous Applications of S t ruc ture  Functions 

Al l  signall ing s chcxncs 111 t  e lecomm~mica t ion  and rad io  engineering 
dcpend on a s table  frequency re fe rence .  In a t ime-divis ion multiple 



access  (TDMA) system, the accumulated phase noise between 
t t m a r k e r ' t  intervals of duration T - T  is an important factor in evaluating 
synchronization performance. The rms phase ' ccumulat ed 
between marker  interval  is characterized by fly T, T )  which i s  
related to  the two-sample Allan variance with dead zone (see  (4.5)). 

h communication systems employing diffe ential phase -shift keying 
(DPSK), i t  turns  out that the second SF D ( h ( ~ ,  I) of the  t ransmi t te r  
oscillator phase noise I) i s  an important p rarneter in  specifying 
achievable sys tem data rates .  

k 

Because of the path delays involved in  network synchronization, the 
SF approach is a lso  important in studying network synchronization and 
specifying the requirements on oscillator stability. 

V. SF'S AND THEIR RELATIONSHIP T O  THE R F  OSCILLATION 

Frequently the PSD of the R F  oscillation i s  used a s  a means of 
obtaining the "PSD" of the  phase noise process .  Here we derive an  
expression for  the N~~ moment function of the  R F  oscillation and show 
how the SF  of the phase process  enters  into the measurement as well 
a s  the problems associated with this  approach. In order  t o  proceed 
with this approach, severa l  restr ic t ive assumptions a r e  required if 
this approach is to  be tractable.  

F o r  the sake of simplicity in  what follows, le t  us work with the 
complex oscillation 

where P represents  the mean square power of the oscillation and 
m(t) i s  given by (2.2).  F o r  k = 0, . . . , N, let us define the random 
variables 

where <$' denotes the complex conjugate of 5 . Then the ( ~ + l ) ' ~  moment 
function of the random variables [ z  

0""' 
z is related to  the ~~h SF 

of the  phase process  m(t) via 
N 





where  

s= (W) s* (UI) ( i)+ Sr (u) = exp(-o 
0 2 !  

W 
2 ' 2 

w 
1 

and the symbol :: denotes convolution. Obviously, the f i r s t  t e r m  
corresponds t o  unmodulated c a r r i e r  and the remaining t e r m s  a r e  due 
t o  oscil lator instability. Thus, i t  i s  c lear  that the "tails" of ST(&) 
do not correspond to  S- ( W )  ! 

$ 
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Figure 4. Contour of Constant Probability Density a s  a Fun 
of T. 
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