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ABSTRACT

This paper is written to cast further light on issues
associated with contemporary frequency and phase stability
measures of an oscillator, This is accomplished by gener-
alizing known and accepted T-domain measures of stability
through the use of Kolgomorov structure functions, Two
sets of stability functions (r-domain stability measures)
are presented and it is shown how they are related to the
rms fractional frequency deviation and the two~sample
Allan variance, It is further shown that these t-~domain
measures of oscillator instability are uniquely related to

the f-domain measure Sy(f) by means of the Mellin transform.

Applications of these stability functions to specifying and
predicting performance of coherent communication systems,
one-way and two-way Doppler measuring, and ranging
systems is used in order to emphasize the utility of the
theory.

I. INTRODUCTION

A problem of current interest to statistical comrmunication theorists,
communication and radar system design engineers and other working
groups, see Fig. 1,
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is that of specifying and selecting accurate and stable frequency
generators for use in the implementation of radar, communication,
navigation, and time service systems. Certain

users of frequency generators have had to face, for the most part,

the deleterious effects which oscillator instability produces upon
system performance by ''seat-of-the-pants'' engineering, At the same
time the users of frequency generators frequently ask the question:
What are the stability requirements of the frequency generator(s)
needed in a particular application?

In fact, it appears at present that those involved with the process of
manufacturing atomic time standards, and electronic time

bases have been largely concerned with the characterization of oscilla-
tor instability from the viewpoint of developing accurate and stable
clocks [1], [2-_], [3] This working group has measured the stability

of oscillators and compared the measurements with frequency stability
measures [17], 2] and suggested mathematical models [17,[27, [47 of
the oscillator. On the other hand, statistical communication and
radar theorists [5], [6], for the most part, have been developing
mathematical models for communication, radar and tracking systems
by assuming the availability of ideal (perfect sine wave) frequency
generators, The net result of these disjoint ventures, see Fig., 1,

is that not enough emphasis has been placed upon determining how
oscillator instability degrades system performance measures or how
the frequency stability measures proposed in [1'| , [2] can be used to
assess performance, Presently, there is a real need for this in the
design of current systems and planning of advanced systems.

This state of affairs, see Fig. 1, is not uncommon to find in many
scientific fields where theory, manufacturing and practice are deve-
loped and used by widely dispersed workers, At the present the authors
feelthatthere is a lack of understanding among the users pertaining to the
differences between oscillator phase instability and frequency instabil-
ity, There is also a lack of understanding of how to use accepted
frequency instability measures, To some engineers, phase and
frequency instability imply the same concept; consequently, one of

the main purposes of this paper is to offer a unified mathematically
characterization of phase instability (time-base jitter) and frequency
instability (frequency-base jitter) of an oscillator and demonstrate the
degree of sameness of the two concepts, their interconnections with
frequency stability measures [1], [2] , and present mathematical




formulations such that certain users can select the appropriate
instability measure for their application, It is hoped that this paper
will also spur and motivate a closer relationship between the working
groups illustrated in Fig, |l by providing a systematic forum for dis-
cussion,

1.1 Organization of the Paper

Structure functions# (SI's) t?j are introduced so that characteriza-
tion of oscillator instability is established on a sound mathematical
basis regardless of the user application, SF's provide a commeon
mechanism by which all working groups can communicate about the
instability of frequency generators. Furthermore, they represent
stability functions by which system performance can be predicted or a
frequency generalor selected, S5Fs are also introduced so that users
of frequency generators can see how current frequency standards
enter into the performance expressions of modern communication,
Doppler and range measuring systems., There are several other
reasons why SFs are introduced [8] , 197, The unifying role they play
with respcct to frequency stability standards is summarized and their
use in various applications as a means of defining system performance
is given, The concepts of phase instability (time-base jitter) and
frequency instability (freqQuency-base jitter) are introduced via phase
and frequency SFs. In addition, r-domain to f-domain and f-domain
to T~domain transformations are summarized in terms of Mellin
transforms and S¥'s, Secondly, with the aid of these S¥'s, alternate
interpretations of accepted frequency instability measures [l'l 27

and their interconnections are given in hopes that the users will be
able to obtain a better understanding of how "oscillator vendor data"
can or cannot be used in their particular application. For the sake of
brevity, emphasis on the applications have been in the communication
and tracking system area,

"Because of their applications, they are called stability functions in
the abstract,




Next, we show the important role which the power spectral density
(PSD) of the oscillator frequency process plays with respect to

several user applications and emphasize (via theory) that it is the key
element which is needed to access the deleterious effects which
oscillator instability has on the performance of modern communi-
cations and tracking systems. In other words, we show that the PSD
of the short term frequency instability is needed in order to define
appropriate T-domain system performance measures, FIor the
engineer invelved in the design of communication and tracking systems,
it appears that the most important 1 -domain performance measure is
not always the rms fractional frequency deviation or the Allan vari-
ance but is application and performance measure (bit error probability,
range or range-rate accuracy, etc,) dependent, Various system
performance measures for users are presented in order to support
this statement.

On the more controversial side, the authors provide discussions which
lead to certain questions regarding the interpretation of the so~called
rms fractional frequency deviation as a measure of frequency in-
stability; rather the authors feel that it is a measure of phase instabil -
ity (time-base jitter) of an oscillator and give an interpretation to
support this, On the other hand, the two-sample Allan variance has a
direct interpretation in terms of frequency instability (frequency-base
jitter) and, as such, provides a measure of the frequency instability
of an oscillator. Use of these two measures then motivate a mathe-
matical manipulation that shows that frequency and time are not
reciprocally related for real world oscillators, User applications

of the two measures are given in the system context in order to offer
support for the proposed interpretation and their use [10], [11].

This is accomplished by presenting performance measures for rang-
ing, Doppler and coherent communication systems in terms of
structure functions of oscillator instability, Finally, we characterize
oscillator instability in terms of SF's of the RF oscillation and show
the problems which arise when one attempts to use the RF domain

for direct measurement of oscillator instability.
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II, STRUCTURE FUNCTIONS (SF) IN OSCILLATOR INSTABILITY
THEORY

th
2.1 SEF!'s of the N = Increment of the Phase and Frequency Noise
Process

.

Let us consider the radian frequency process 2(t) of an oscillator
which we assume takes the form

N-1 &
') k k .
d(t) = U)O + 'E‘—t + () (2,1)
[ e k:l ' T————t
Mean Short Term
Long Term
Frequency Frequency
Frequency Instabilit
Drift Y

where Wy = 27f, is assumed to be the constant mean frequency, the
Qk's constitute a set of random kth-order frequency drift rate and

{ (t) is a stationary, zero mean random process used to characterize
the short term oscillator instability, Integrating (2,1) from 0 to t,

we have the oscillator phase noise process

X Ol 1 k
P
B(t) = wyt + bt [1(t)-0(0)] + 3(0) (2.2)
k= Short Term
Long Term Phase Instability

Phase Drift

t
Consider now the N increment of ¢ (t) defined recursively by

N N N-1 N-1 N=-1 N-1
Bl ) &8 rr s =AU ) (2.3)
k . , .
where T, (7., TZ\’ +2., T )is a k-dimensional vector parameter and
AU (t;rrl) = (t+'rl)—u(t.),whichis stationary. For the purpose of our dis-
cussion, we define the Nth SF of phase instability to be [10]
N), N " N 42
DM = Ellaw 5 2.4)

where E{*}is the expectation operator in probability theory. When
&) S n y
(L)bYDu(; (t). If S;L’(w) is the two-

TIETs k=1, ..,,N,we shalldenote Dﬂl




sided PSD of the process { (t), then [10]

N
(N), N, _ 2. 2 (N), N
Dfiv (r ) = o T E{QN_l}‘FDw (r ) (2.5)
where
2n e _n Se (W)
(n), n 2 L2
Dy ) = 50— J‘—w Al sin (wTk/Z)sz dw (2.6)

fornz1, For M> N, (2,5) reduces to

o™ = DM @.7)

t
Analogously, the (N-l)s SF of frequency instability satisfies

N-1
(N-1) _ 2 2 (N-1) N-1
D' 1) = klﬂl n B P Dy ) (2. 8)
where
2n =
f) n_ 2 2 )
Dr(r’) = 5o j’_@ klzll sin’ (wr, /2)S; (Wi (2.9)
for n=1, For M=z N, then
DéM}_'r_M) - DéM)(_q:_M) (2.10)

Equations (2.5)-(2.10) are important in several respects, First of all,
if we take high enough increments, the corresponding SF is independ-
ent of the drift effect, This is evident from (2.7) and (2, 10), Second-
ly, we note that the usual convergence problem associated with
"flicker''-type PSD can be avoided in the r-domain., For example,
suppose Sy (#) behaves like | W=V with vzlas w0, For a fixed
vector 7", the quantity -ﬁ- sinz(w'rk/z) is proportional to w?? for | o]
k=1
small. So, as long as v <(2n-1) the expression for D(n)(ln) is finite,
Similarly, D% (t™) is finite if y<(2n+1), Hence, besidbs combatting
the problems’ associated with the long term frequency drift, the SF
approach is useful in treating "flicker''-type noise. An interesting
example demonstrating these points is given in EQ] . Thirdly, notice
that all SFs are characterized in the t -domain via the PSD S: (w).

b
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Equations (2.6) and (2.9) can be inverted for S: () using Mellin trans-
forms [10]. In particular, the PSD S; (W) can be evaluated via

-1
Si(w = 7 [7(s)] (2.11)

where the Mellin transform of the function f(.), 772f is given via

n (s
?ﬁf<l-stk>: - , (2,12)

-1z
m E] is the one-dimensional inverse Mellin transform (with inverse
transform variable W), W(K (sk) is the one-dimensional Mellin trans-
form of the functions k

k) = s’ (%) k=
ka = 8in > =1, ,.4,n

and 77Zg(§_n) is the n-dimensional Mellin transform of the function

mt
az™ = = b
4 .
Alternatively,
2 .1
st(w) = w7 (s)] (2,13)
where now
g=) = = oMt
T oo

Unfortunately, taking the inverse Mellin transform in (2.11) and (2,13)
is difficult in general and numerical techniques may be needed,

For small n and 7] =,..= 7, a different method for inverting (2, 5)
and (2, 8) was presented in C)—‘ Figurce 2 summarizes v-domain

to f-domain and f-domain to T-domain transformations which are
possible by either of the two approaches,

SFs of the frequency process ? and phasc process % of an oscillator
are fundamental to definitions or frequency standards involving
oscillator instability. In the following, we give new interpretations to




the recommended definitions [1], 2] of instability in terms of the
theory based upon structure functions., In particular, we discuss the
conditions to be imposed on the phase or frequency process in order
to attach meaning to the rms fractional frequency deviation and the
two-gsample and L-sample Allan variance,

2.2 RMS Fractional Frequency Deviation

For the rms fractional frequency deviation to make sense the radian
frequency process @(t) has to be modeled as a constant W plus a
stationary frequency component Lb(t) whose PSD is well behaved near
w= 0, i.e., Ss (W) ~|w|™Y, v<1, Then,

i
(1) gy &
¢

is the expected value of the square of the phase accumulated in 7
seconds. The true rms fractional frequency deviation defined by
Cutler-Searle can be expressed in terms of the first phase structure
function as [9]*

D E{ly¢t+m) -u;(t)] }< o (2.14)

DM (e
Af('r) = _}PT' . (2.15)
f0 (wo'r)

Furthermore, the statistical average of the measured rms fractional
frequency deviation, say Af('r /f., as found using frequency counted
data, is easily shown to be an asympotically unbiased estimator of
AM(T)/f,.. The measurement bias is expressed in terms of the first
phase SF via

H)

2 D
[_A_@Lan] (o e o 2. 16)
fO Lz(wofr)z

2.3 The Allan Variance

For the two-sample Allan variance to yield a precise meaning, the
frequency process zfe(t) must be modeled as a linear frequency drift
term and if "flicker''-type noise is present Ss: (W) must behave like
|w| -V for v < 3 near w= 9., Then v

*In the original definitions for rms fractional frequency deviation and
Allan variances [1], [2], [3'_], the time average, instead of the present
ensemble average, was employed, However, in order to fully exploit
various results on stochastic processes in the literature, the ensemble
average is used in what follows, Notice that both averages are equi-

valent if ergodicity holds.
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g (1) S(ea2e)-(ter) | B(tn)=3)]°
| ) (2.17)
- W YT
(W) 0 0

0

ig the expected squared fractional deviation of the average frequency.
The two-sample Allan variance E{0% (2, 1, )} with zero dead time
between measurements can be written as [9]

E{ci(z,«m)} = — . (2,18)
Z(Ub'r)

Except for a factor of + and the normalization constant (u)o'r)z, the
two~sample Allan variance is exactly the second phase structure
function, We also note for small r that the average in (2.17) is
related to the instability of the frequency process, i.e,, derivative
of the phase process,

If the frequency process @( ) does not have any drift and SI (w) behaves
like \m ]‘V for v <3, then the L-sample Allan variance [2'_] 13, eq. 4]
is

2 1
Efof (L1} = 155 —— [D

= ()

(1)

! (L7 (2.19)

1
()= 2 qu
The L-sample Allan variance is not related to the two-sample Allan
variance in a simple way, but rather it is an asymptotically unbiased
estimator of the rms fractional frequency deviation squared provided

the latter is well defined, The estimator bias is expressed in terms
of the first phase SF via

1 [ 1 (1) 1 (1)
——— ] (’T) - mmi—— 7)) (LT) . (2.20)
w2 L1 L(L-1) ~¢ |

0

2,4 Relationship Between RMS Fractional Frequency Deviation and
Allan Variance

If the assumptions regarding the frequency process 3(t) in Section 2.2
hold, then the two-sample Allan variance and the rms fractional
frequency deviation form a one-to-one correspondence via




2 2
2 f f(2
Bl (2,7, M) = 2{[%:—)] - [Aé T)]} (2.21)

The equation can be inverted to yield

(2)2kq

) e D
[Af(r)] - %E{Oi(Z’T’T)} +%Z R

. (2.22)
2
£ k=1 2(w02k¢)

In addition, the Li-sample Allan variance is related to the rms frac-

tional frequency deviation via
(1)

2 D (L7)
2 _ L Af(T) 1 4
E{GA(L’ T’ T).} - L—l ( f ) h L(L—]—) 2 (2023)
0 (wo'r)

1
Provided Dw(r )('r) <= for all r, then for large L we see that the L-

sample Allan variance converges to the mean squared value of the
fractional frequency deviation. The authors believe that these facts
have not been recognized in previous studies,

In addition, these relationships allow us to identify the bias [12, eq, 157
function % (L) as

E[crz (I, v, 7] D(l)('r)—D‘{l)(L ’1')/]'..4;Z
A A 2L b !
B =T i (L—1> @)
Elo, 2,7 )] D, (7)
(2.24)
and if bel)(q-) <w» for all 1,then for large L,
x() = 2p ) /pfin)
® -k Dﬂ(Z)(sz)
=%+%24 — (2.25)
k= D)

III. INTERPRETATION OF QOSCILLATOR INSTABILITY MEASURES

3.1 Phase (Time)and Frequency Instability

In characterizing the performance of an oscillator, it is of funda-
mental interest to distinguish between the notion of "instability! and




'brecision' of its frequency as well as its phase, While it is relatively
easy (and unambiguous) for one to agree upon a definition of the
"precision’ of a random quanti'y in terms of, perhaps, the deviation
from its mean value (the relative error), there is no general agreement
of what "instability'' means, In what follows, we shall take "instability"
tomeaninstability with respect ‘o the passage of time, i.e,, how a
stochastic quantity behaves (in a probability sense) relative to its past
v seconds earlier. For example, an oscillator which emits a frequency
that does not change with respect to time is a "'stable! oscillator; the
frequency it gives at any particular instant is "precise '. Using these
notions, we shall attempt to interpret the meanings of phase instabil-
ity. Conventional measures, in particular, the rms fractional frec-
quency deviation and Allan variance, will serve as the basis for our
interpretations,

To formalize the following discussion, we shall assumec the instantan-
cous phase and frequency of thc oscillator satisfy

Ik

i

(t) Wt + () [2(0)-1(0)" (3.1)

HH .

(1) = 4y ) (3.2)
where - (t) is stationary with finite variance and E{J (1)} = E{'zr )} = 0,
Under these assumptions, the instability measures to be discussed are
all well-defined quantities,

The instantaneous phase (time} instability of the phase noise process
(t) is measured by the increment Al gt'ir) = U(t+7) - (1) while the rms
phase instability is measured by /D! /(7). Thus the rms fractional
frequency deviation is related to the phasc instability via {2,15), On
the other hand,. the instantaneous frequency instabili'y of t.he frequency

noise process (1) 15 measured by the increment A (L;* = Ut )= (1)
while the rms frequency instabilily is measured by /Dy '(7). The
two-sample Allan variance approximates D'gl )(_fr)/Zu;‘é with an error

(b |

W

D

() e
2 2 2
—e— E[O’ 2,r,n)1 = — r sin
Zwa A - wz "‘O

0 ™0

2w
[1-sin TT‘} S (w)dw= 0

(3.3)

T

o €

For a PSD 5y (w) with power concentrated in the frequency region
wr<<l then -
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- 2
w_z ~ Eflo,2,7,m)] (3.4)

Thus the two-sample Allan variance is a measure of frequency instabil-
ity of the oscillator. Table I serves to summarize the results,

From (2,14), (2,15) and (3.1), it is obvious that the rms fractional
frequency deviation Af( 'r)/:E is an instability measure of the phase
process § or the accuracy (%relatlve error) of the phase mcrement
A% =3 -3, Now the frequency accuracy is related to Efl }/t.lJ2 If
(2,15) is used as a measure of frequency precision, the error intro-
duced in interpreting (2, 15) as a measure of frequency precision is

B(i%) [Af(w)]z
2 f
o

._LZ. I M - sincZ (wTT) ]S&!(w)dw =20 (3.5)
0 mw,. 0
0
where sinc(x) 4 sin x/x., The severity of the error in this interpreta-
tion defends on the shape of S' (w) weighted by the weighting function
1-sinc®(wr /2),

3.2 Normalized Time Instability Times the Frequency Instability as a
Measure of Oscillator Instability

Depending on specific applications, oscillators are used as references
for making time (phase) measurements as well as in frequency
measurements, Since frequency instability is fundamentally different
from phase instability, it seems only fair to specify the performance
of an oscillator in terms of both its frequency and phase instability

in the measurement (1) domain. For this purpose, we can define
frequency instability 8f(7) to be the rms change in frequency over the
observation time 7, through

A ) ~

— 2 -
df () = W/ZfO/E[oA(z,r,fr)l (3. 6)

On the other hand, the time-instability 8T (7) can be defined as the rms
change in the '"time' (see (3,11)) from its mean 7, via
(1)
D (r)
5T (r) 2 ‘”2 =<Aff(”> .y (3.7)
v wy

0
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The locus of the point (8f(7), 86T(T)), as a function of the observation
time T, could serve as the overall stability performance guide of an
oscillator and is depicted in Fig., 3.

The product: frequency instability times time instability
1 1
b {r) be]e'r)

8(7)5T (1)2 fl ¥ - >
ov (2m) (2m)

(3. 8)

of an oscillator serves as a parameter by which various oscillators
can be compared for a given frequency ofoscillationand a given
observation time v. In Fig. 3, this parameter at T= 7, is equal

to the area of the shaded area, For an ideal oscillator then

8f(7)e 6T (r) = O (3 9)

for all 1. Thus any oscillator, which is to be used as a standard inin-
stability measurements, should appear to the oscillator under test to
satisfy (3.9) for all 7 of interest. Moreover, if we use (3.4) to
approximate D&,D('r) by the Allan variance then we can write

. \
I I A (3.10)
fo T A - fo
Allan —_—
. rms Fractional
rms Freduency- Variance Frequency Deviation
Base Instability y

rms Time-Base
Instability

This equation supports our earlier claim that the Allan variance is a
measure of oscillator frequency instability while the rms frequency
deviation i8 a measure of oscillator phase (time) instability, The
authors believe that the above construction has provided insight into
the meaning of the Allan variance and the rms fraction frequency
deviation.

To gain further insight into these performance measures, let us
assume that the random process f(r) éA\f;(fr)/Zﬂ and T(7) @ A\b(fr)/wo
are jointly Gaussian, If the process ﬁ;(t) is stationary, it can be
shown that Ay (r) and AlII('r) are uncorrelated, Hence f(7) and T(7) are
uncorrelated Gaussian processes with zero mean and standard
deviations &f(7) and &§T(1). If we plot the contour of constant prob-
ability density as a function of 7 as in Fig, 4, we observe the effect
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of the degradation of oscillator stability as T increases.

3.3 Is the Nominal Frequency of a Real World Oscillator Reciprocally
Related to the Nominal Period?

If the oscillator phase process &(t) in {3,1) is used for a clock (period

Ty & Z'rr/wo), the time T _(t) registered by the clock is given by

T (1) = [3(1)-3(0))/w, (3.11)

During the interval (t,t+T0), the clock time accumulated is
AY(T )

The time average frequency during this time interval is

A\JJ(TO)

O) 2T Jt

}is

0
Hence the product ATC(TO) X _f—(T

0

which is random with mean

E(aT (T )xE(T )]

2

(T )/ (2m)

0
From (3.15), it is clear that the rms fractional frequency deviation
(or first phase SF) characterizes the uncertainty in the product
ATC(TO) X _f'(TO). Since (Af(TO)/:EO)Z is not zero for real world
oscillators, the period and (time average) frequency are not inversely
related for any physical clock, Instead the mean of the product differs
from unity by the square of the rms fractional frequency deviation.

1V. EFFECTS OF OSCILLATOR INSTABILITY IN APPLICATIONS IN
TERMS OF SF'S

The characterization and specification of oscillator instability must




ultimately be made in the light of its effects on the performance of

systems that rely on the oscillation, The utility of SI's will now be

demonstrated in terms of a number of user applications, It

shall become evident that, in. every application, the PSD S} (w) of the

stationary frequency noise is the key to predicting performance

due to oscillator instability. Only a summary account is given herein;

detailed analytical developments are anticipated in future articles,

4,1 Effect of Oscillator Instability on Phase-ILocked Loop (PLL)
Tracking

One intercsting application of SF's is found in studyingthe tracking
behavior of a PLL, In addition to a first-order statistical character-
ization, i,e,, the phase-error variance, the first SF of the phase
error is also an important performance measure of a tracking loop.

It is important in assessing the effect of oscillator instabilities on
tracking performance and it is related to the average hold-in time ofthe
PLL,

As an example, it was shown in [10] (assuming the loop bandwidth is
small compared to 1, i,e., WL'T << 1) that the first phase-error SF of
a first-order loop due to oscillator instability is given by

Wy 4 pib)

! ¥

where ¢ is the loop phase error, ‘lﬁ represcnts the phase noise on the
transmitted oscillation and |, represents the phase noise process
produced by the frequency generation in the receiver. Notice that in
this case, the phaseinstability measure (3, 7) of the oscillators are

the quantities of interest in predicting the ability of the loop to track
the input process in the presence of oscillator phase noise.

NG

(t) = (7) (4.1)

4,2 Effect of Oscillator Instability on One-Way and Two-Way
Doppler Measurements

In a practical Doppler measurement system, the Doppler information
is usually extracted from the local phase estimate increment AG(T)
generated by the receiver PLIL, For one-way Doppler measurements,
the error contribufion due to oscillator instabilities can be shown to be
contained in the equation

(tY+ D, (1) (4.2)




where ©  denote the error in the local phase estimate, {; represents
the transmitter oscillator instabilities, |, represents the receiver
VCO instability and ¢ 3 represents the receiver reference instability.
The quantities lDw,(. )( 7} and ID( )( —) denote the first SE of the loop

"1 2
filtered () and {, process which are directly related to the PSD
Sﬁr(w). Thus the key role which S‘:,(w) plays is again manifested,

For two-way Doppler measurements tb], the situation is more com-
plicated, The first SF of the crror in the local phase estimate due to
oscillator instabilities is given by

) Dy 4 imy + 26 + 0
® 11‘0 Yy Vo 1er:,;
where LLJO represents the transmitter oscillator instability, |; repre-
sents the vehicle receiver VCO instability and U, represents the
ground receiver, VCO instability, and 1';3 represents the ground

receiver reference instability [5]

D7) = D () (4. 3)

In the case that: (1) the transmitter and receiver reference signals
are derived from the same timing sourcc and (2) the static phase gain
and the receiver filtering can bc neglected, then the error contri-
bution due to the reference oscillator instability “O—UB =y alonc is

Dq(jz)('r, T) which is explicitly (see (2,06))
.© HO)
pBir, ) =2 | s yein* &) 5 au (4.4)
W T U, 2 2 wz

where T is the round-trip delay time of the signal, Hence we sce that
the second SF of the phase noise is the important quantity to specify
th%)performance of the reference oscillation, It can be shown that

T) is related to the two-sample Allan variance with non-zero
ddad time T-T between measurements E{r,A(Z, T, ™)} via

2 1 2
E(-5 @2, 1,7} = ——5 b/ 7r,7) (4.5)
2(w ’
(Wy)

Under the same assumptions, if the Doppler frequency shift is
derived from the loop frequency estlmate the error contribution
from the oscillator instability! bis D 1)('r). In this case, the first SF of
the frequency noise process of the reference is the instability meas-

ure of interest,
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4,3 Effect of Oscillator Instability on Range Measurements

In one-way ranging, the vehicle transmits a ranging signal to the
tracking station. Range from the tracking station to the vehicle can
then be determined from a measurement of the local phase estimate of
the receiver PLL relative to the phase of a reference. The uncertainty
introduced in the range estimate due to oscillator instabilities alone is
related to the variance in the phase estimate error

o _8,2 +r52 + 0 (4.6
R P +%)
where
o Se (w)
~2 1 N
Oq’l = 5 J:m ‘l-Hcp(JLU)‘ wz dw
- Sl.b (w)
~2 1 . 2 2
oqu = ﬁj‘_m |1—Hcp(3w)\ -z dw
2 2
Ollf3 = E{y,]}

and Qfl represents the transmitted reference instability, wz represents
the receiver VCO instability, , represents the receiver reference
instability and Hcp(jw) is the receiver PLL closed-loop transfer function.

In two-way measurements, a ranging signal is transmitted to the
vehicle to be tracked and is returned by it to the tracking station,
Range is then determined from a measurement of the phase of the
returned tone relative to a reference (possibly the same one as the
original transmitted tone), The uncertainty introduced in the error in
the phase estimate due to oscillator instabilities alone is related to the
variance of the phase estimate error

2 ~2 ~2
a

~2 2
a +ag, 4o, +0o (4.7)
% T AL

where the g's are defined by expressions similar to (4.6)., Here 11;0
represents the instability of the transmitted signal, | represents
the vehicle transponder VCOQ instability, 1112 represents the receiver
VCO instability, 1};3 represents the instability in the reference used
for phase comparison,
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If the effect of the PLL's are neglected and the transmitted tone and
the reference tone are derived from the same oscillator, then the
error contribution to the range measurement due to the oscillator
phase noise U is relafed to D‘,_l)(T) where T is the round-trip path
delay. Notice that D, '(T) is proportionate to the rms fractional
frequency deviation,

If the phase error of the PLL in the tracking station is used to measure
range-rate via Ap(r)/~ or ¢, expressions similar to (4,7) and (4, 8) can
be obtained in terms of the appropriate quantities,

4,4 Effect of Oscillator Instability on Coherent Communication
System Performance

In digital communication systems, the bit error probability [6'1 is an
important performance measure and is related to the statistics of a
random wvariable which depends upon [ll"l the phase error ¢ and its
increment Ag :313@(1"). Then the probability of error will depend upon
the instability and the accuracy of . The first SF D‘(}l)(T) given by
(4.1) becomes the important parameter in determining the bit error
probability., The effect of the oscillator instabilities then enters into
the bit error probability evaluation through, for example, (4.1) and
therefore can be used to selccl frequency generators for system
implementation,

4,5 Application of SFs in Studying Timing Standards [9]

In timing standards, it is important to specify the instability 7 (t) as
wecll as the drift term as in (2,1), The usc of SF's provides a con-
venient means for such measurements, The scheme is first to work
with successively higher increments until the drift problem and the
singularity problem associated with "flicker' -type PSD are alleviated.
The '"'measured' SI''s will then be inverted via (2,11) or (2,13) to

get an estimate for S;(w), After obtaining this estimate, one can
design an optimal cstimation procedurc to evaluate the drift, An

example of such an approach was discussed in [91 .

4,6 Misccllaneous Applications of Structure Functions

All signalling schemes in telecommunication and radio engincering
depend on a stable frecquency reference, In a time-division multiple




access (TDMA) system, the accumulated phase noise between
"marker' intervals of duration T-t is an important factor in evaluating
synchronization performance, The rms phase nogj ccumulated
between marker interval is characterized by A/Dt i(fr, T) which is
related to the two-sample Allan variance with dead zone (see (4.5)).

In communication systems employing diffefential phase-shift keying
(DPSK), it turns out that the second SF D( )(rr, 7) of the transmitter
oscillator phase noise { is an important pgrameter in specifying
achievable system data rates.

Because of the path delays involved in network synchronization, the
SF approach is also important in studying network synchronization and
specifying the requirements on oscillator stability.

V. SF'S AND THEIR RELATIONSHIP TO THE RF OSCILLATION

Frequently the PSD of the RF oscillation is used as a means of
obtaining the "PSD'" of the phase noise process, Here we derive an
expression for the NlCh moment function of the RF oscillation and show
how the SF of the phase process enters into the measurement as well
as the problems associated with this approach, In order to proceed
with this approach, several restrictive assumptions are required if
this approach is to be tractable,

For the sake of simplicity in what follows, let us work with the
complex oscillation

s(t, 3(t)) = /2P explja(t)] (5.1)

where P represents the mean square power of the oscillation and
§(t) is given by (2,2), For k=0,,..,N, let us define the random

variables
k
N
(N-) s(t + Zfrm) k=0,2,...
m:l

. = (5.2)

k N k
(N_)s"‘ t Z Tm k=1,3,,..
m=1

where g* denotes the complex conjugate of £, Then the (N-ILl)s’t moment
function of the random variables {zo, vee, zN} is related to the Nth SF
of the phase process &(t) via




. . N1 .
Elz...z,] = (PN Elexplin stz 1) (5.3)

Notice that if the NP jncrement of the phase process b(t) is station-
ary, then the quantity Efexp(; Al\é(t;lN)'_‘w} is independent of t and
e%ual to the characteristic function of the Nth increment, say,

AT B (=0, N), evaluated at unity, Furthermore,if "% (t;:N) is

Gaussian, then

N+

1
' exp[-D(N

) N
5 (T )/27] (5.4)

EEZN.'.ZO] = (\/ZP)

which generalizes earlier work when N > 1. As an example, if the
complex oscillation satisfies

s(t, 3(t)) J2P exP{j[mOt () -0 (0) +3(0)T) (5. 5)

then

E[STS::"] 2P eXp[-D‘(!rl)(T)/Z'} exp(—ju.‘bfr) (5.6)

The real part of (5, 6) satisfies

(1)
i

It can be shown that if (t) is stationary, Gaussian, then the time
average correlation Elr(t+7r(t)] of the process

Re{E[sTs*]} = 2P cos wr exp[-3D; ()] (5.7)

r(t) -é Relst)} = \,,_2._.}3., Cos(wot—kﬂ'(t)-:'_:(O)+<§(0)) (5. 8)

where Re{E} denotes the real part of I, is given by [13, pp.108-1197

=

T
1 n .
3 1 st l " - -‘ -
B rr 1im 5T Elrt+m)rt)!dt (5.9)

Tae -1

%Re{E[sﬂ_s*'}}

(1)

1

P cos wyT expl-D; '(7)/2"

Notice that in this case, the first phase SF D{_l)(fr), which is related
to phase instability, is the quantity of interest in characterizing the
instability of an RF oscillation, If we now assume that U (t) is
stationary then the PSD of sin[ubt-l—w(t)'_] is given by [147
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S.(w) = p[sr (W-0) +S_ (w+m0)] (5.10)

0 0
where
Sy (w) S: (W) Sq (w)
S, (w)=exp(—0$) 6(w)+—q’2—— +2—1'-( ‘1’2 5 ‘“2 )+
0 W w W
Se (W) Sr(w)  Se(w)
1
ET(wz e ‘lfz " llfz )+ (5.11)
w w w

and the symbol * denotes convolution, Obviously, the first term
corresponds to unmodulated carrier and the remaining terms are due
to oscillator instability. Thus, it is clear that the 'tails'' of Sr(“’)

do not correspond to S‘Ii(w)!
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