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ABSTRACT

Extensive research over the past years has provided a
model for the description of frequency instabilities of
clocks and oscillators. This model consists of the
superposition of three distinct parts: (1) random, non-
deterministic fluctuations described as noise; (2)
Tong-term, systematic trends or aging; and (3) fluc-
tuations induced by environmental sensitivities of the
oscillator or clock. The random part of the model
includes noises which have presented certain mathematical
problems. These mathematical problems are partly
responsible for the creation of numerous techniques of
analysis, but these techniques have neither produced
substantively new models nor have they added insight
into the physical origins of the random fluctuations--
some of which remain obscure. The purpose of the
measurement process is to estimate the levels and kinds
of instabilities present in a given device--that is, to
quantify the model. The mathematical analysis used is
merely a means toward this end, and it is important to
retain this perspective. Fortunately, there are rela-
tively simple means of analysis which are also commonly
used--the two-sample variance and the power spectral
density.

Crucial to any measurement are the intended uses of the
result. This includes the levels of accuracy and
precision needed, as well as the intended application.
For example, one may wish only a relative comparison
between two oscillators; and, thus, absolute accuracy
(as opposed to precision) is of no interest. The
specific application intended for the measurement will
often influence the form in which the final quantified
model is reported.
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I. INTRODUCTION

It appears to be a custom, nowadays, to have a paper reviewing the con-
cepts of the measurement of frequency stability at conferences dealing
with time and frequency. Consistent with this trend, this paper has
been prepared at the request of the program committee.

Perhaps one of the most useful aspects of review papers is to provide an
entrance into the literature of the field being reviewed. In the case

of frequency stability, there is really a great deal published; and it

is with some difficulty, now, that anything new can be added--especially
in review papers. In order to provide entrance into the literature, four
specific papers are cited here. The first two reasonably cover the tech-
nical subject prior to about 1973. The next two papers are excellent
review papers on the subject and are more current:

[1] Barnes et al., "Characterization of Frequency Stability," IEEE
Trans. on I&M, Vol. IM-20, No. 2, May 1971, pp. 105-120.

[2] Lesage and Audoin, "Estimation of the Two-Sample Variance with
a Limited Number of Data," Proceedings of the 31st Annual Sym-
posium on Frequency Control, 1977, pp. 311-318.

[3] Rutman, "Oscillator Specifications: A Review of Classical and
New Ideas," Proceedings of the 31st Annual Symposium on Frequency
Control, June 1977, pp. 291-301.

[4] Winkler, "A Brief Review of Frequency Stability Measures," Pro-
ceedings of the 8th Annual Precise Time and Time Interval (PTTI)
Applications and Planning Meeting, Nov. 1976, pp. 489-527.

Not only are the Tast two excellent review papers, but they also provide
rather extensive bibliographies covering the more important publications
in the field.

The present paper attempts (in a rather tutorial vein) to review the sub-
Ject of frequency stability mainly from the viewpoint of Operations
Research (OR), with the hope of developing an intuitive understanding of
the concepts and operations. Those who prefer the more mathematical
approach are referred to the above-cited references. Thus, it is by
intent that detailed mathematical calculations are avoided as far as
possible in this paper.

IT. MEASUREMENT AS AN OPERATION

Figure 1 is a somewhat simplified diagram of measurement operations.
In any measurement, one begins with some idea about what one wants to
measure. That is, one has a model in mind.
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In the case of a measurement of the acceleration due to gravity, for
example, one assumes Newton's laws and assumes that g is reasonably con-
stant. In the case of a voltage measurement, as another example, one
assumes that a volt meter will not unduly load the source and that the
meter covers the range of expected voltages. All of these underlying
assumptions are part of the modeling process, and it is important not
only to make the assumptions but also to document them.

In the case of frequency fluctuations of clocks and oscillators, rather
comprehensive models already exist and are discussed below to some sig-
nificant extent. Thus, it is not necessary to invent new models to
begin the measurement process--they are already well documented. On
the other hand, a researcher might be able to improve our understanding
substantially with new models, but research is often a separate field
from straightforward measurements. The emphasis of this paper is to
review present measurements and not to discuss the opportunities for
research to produce or evaluate new models.

Based on the model assumed and the equipment available, one designs an
experiment to evaluate the model. If the experimenter is wise, he
will also design his analysis of the data at the beginning.

If one is performing a measurement, there is some aspect of the model
which is unknown. In the above-mentioned example, concerning the measure-
ment of the acceleration due fo gravity, the parameter g of the equation
S=1/2 gt2 was to be determined by experiment. [t was assumed that the
object accelerated uniformly, and only the constant g was to be deter-
mined. That is, g was an undetermined parameter of the model.

In the case of the measurement of frequency fluctuations, the typical
models consist (among other things) of the superposition of several dif-
ferent noises. The levels of each of these noiscs are not normally
known in advance. That is, the noise levels are undetermined parameters
to be estimated in the measurement operation.

This Teads us to what I think is an important definition: A measurement
is an operation designed to estimate the numerical value of a model pa-
rameter. Thus, without a model, no meaningful measurment is possible.
Given a model, many measurements often suggest themselves. For example,
when Newton suggested that every particle in the universe attracts every
other particle in the universe with a force that is proportional to
etc., etc., one can immediately set about measuring that constant of
proportionality, big-G. Without the model, the experiments don't make
sense.

Based on the experimental design, one next actually performs the experi-
ment and obtains data. The data are subjected to the analysis routines
which had been previously designed, and the unknown parameters of the
model are "fitted" to the resuits. One typically designs test experi-
ments to verify the functioning of the equipment and to ensure that
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one is actually fitting parameters to the oscillator being measured
and not the measuring system. For example, if the noise level of the
measuring system is higher than that of the oscillators under test,
one might get good model fits to the data; however, the results will
not be applicable to the oscillator but rather to the measurement
system.

It is at this point that the researcher and the engineer part company.
The researcher into frequency fluctuations will be interested in per-
fecting and refining the models or gaining insight into more fundamental
models. The specific levels of noise might not be of particular in-
terest to him, but rather the adequacy of the model in reflecting
"reality might be more important. For example, he might be interested
in whether other models might provide a better fit. On the other hand,
the engineer who just wanted to know how bad the oscillator was in order
to decide whether or not it was useful in his particular application has
his measurement, and he can leave the operations of Figure 1.

Fortunately, researchers have produced some rather comprehensive and

useful models which seem quite adequate to describe present-day oscillators
rather completely. This is a sign of a mature field of study. Even

though the physical origins of some of the noise components of oscilla-

tor models remain obscure, one really doesn't expect significant

revisions in the models themselves. We may gain added insight into

their origins or get small refinements; but, overall, no great changes

are expected in the mathematical form of the models.

IIT. MODELS OF FREQUENCY FLUCTUATIONS
The conventional models [1] of an oscillator begin by assuming that the

output signal, V(t), is approximately sinusoidal and can be represented
by the equation

V(t) = [Vo + e(t)] sin oft) (1)

where V_ is the nominal (constant) amplitude; «(t) represents the
fluctua¥ions in amplitude; and @(t) is the instantaneous phase of the
oscillator. In particular, the phase is assumed to be represented in
the form

o(t) = 2wvot + ¢(t), (2)

wherg Vg Ts the nominal frequency of the oscillator and ¢(t) represents
the instantaneous phase deviation from the nominal phase, ZWvOt.
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For the sake of compieteness and utility, it should be noted that
there are certain restrictions on eq. (1) and (2). Stated in a quali-
tative way, these restrictions are (a) that the fluctuations in ampli-
tude, =(t), are small compared to the nominal amplitude, V_; and

-I 8(1)

(b) that the fluctuations in instantaneous frequency, 5T ar > are
small compared to the nominal frequency, Vo Mathematically, these

can be expressed in the form

=(t) VO,
(e
2 dt 0

Normally, high-quality oscillators easily meet these conditions.

It is of value, also, to introduce certain terms which are commonly used
throughout the Titerature on frequency stability. The instantaneous
(angular) frequency of an oscillator is defined to be the time rate of
change of the phase. Expressed as a cycle frequency, vw(t),

At) T 2= & ult), (4)

where v(r) is expressed in Hertz.

Also, the instantaneous, fractional frequency fluctuations about the
nominal are commonly defined by the expression [1]

which, with the aid of equations (2) and (4) can be expressed in the
form

('C) - ,\‘O
ylt) = ——= (6)
0

Most models are concerned with the quantity y(t). Occasionally,
however, one sees in the literature the time error, x(t), being
used. This quantity, x(t) is defined by the relation

%(t) 7 e alt), (7)




and clearly satisfies the relation

_odx(t
y(r) = &L (8)

In words, x(t) is the instantaneous time error of a clock run from

the oscillator. It is thus expected that frequency stability measure-
ments will be concerned with various statistical functions of both x(t)
and y(t) such as power spectral densities, e.g., Sy(f).

The conventional model used to describe frequency fluctuations, y(t),

has three main subdivisions (see table 1): (1) random, non-deterministic
fluctuations described as noise; (2) long-term, systematic trends or aging;
and (3) fluctuations induced by environmental sensitivities of the oscilla-
tor or clock.

The treatment of environmental sensitivities is a rather special case and
(although extremely important) will not be covered here. In general, one
wants to minimize environmental sensitivities. The separation of environ-
mentally induced fluctuations from intrinsic fluctuations is normally

done by correlation techniques. Toward this end the transfer function
models of Box & Jenkins [5] are of value.

The treatment of systematic trends is often given short shrift. In
principle, a Tinear drift in frequency of an oscillator with time can

be measured with arbitrarily high accuracy. In practice, however, one
might not have the time to evaluate the model parameter with sufficient
accuracy to relegate it to the status of an adequately well-known con-
stant. This is especially true when one realizes that the random parts
of the model disturb the accuracy with which the systematic parts can

be determined, and that an error in the frequency drift term, for example,
becomes a quadratic error with running time in the indicated time (or
phase) of a clock. Indeed, when one is attempting to predict clock per-
formance for the future, errors in estimating the systematic terms almost
always predominate for very long prediction intervals (months to years).
Percival [15] has proposed using prediction errors directly as a measure
of frequency stability because the important contribution of the sys-
tematic terms is automatically incorporated.

The random, non-deterministic parts of the model have received a great
deal of attention with primary emphasis on the continuous, Gaussian ele-
ments.

Generally, experiments have revealed five different noise types that
might be needed to model an oscillator. Typically, only two or three of
the terms are necessary to describe the noise elements of an individual
oscillator over a large range of time intervals. The five terms of the
Gaussian noise elements listed in table 1 have names and are listed in
table 2.
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The sporadic elements constitute a special problem. The objective docu-
mentation of their existence is limited [7,8], and no clear consensus
exists on how to handle them [4,6,8]. However, it does appear, in general,
that no great errors are committed if one simply ignores these elements
entirely. The reasons behind this are twofold. First, the step sizes
are normally small (of the order of other noises); and second, they tend
to be infrequent (perhaps less than once per day). For the remainder

of this paper, the sporadic elements will be ignored--a subject more
appropriate to research on oscillator models than to practical measure~
ments of frequency stability. It is acknowledged, however, that in some
applications the sporadic parts could be quite important.

ITI. EXPERIMENT AND ANALYSIS

To this point in the paper everything has been reasonably straightforward
and without much controversy. Indeed, there is amazing consensus on the
model elements. In the areas of analysis and (to a lesser extent) ex-
perimentation, there is not such close agreement. One can find numerous
analytical techniques designed to fit the model parameters (noise levels,
drift rate, etc.) to the data.

Fach of the analytical techniques has its own advantages. Typically,
these advantages either favor a certain method of analysis of the data
as derived from special equipment (e.q., frequency counters or spectrum
analyzers), or they have the value of being useful for richer models
than those considered here. (For example, if one were to consider a
model with a frequency spectral density (S (f)) varying as 'f ™ for

o < -3, then very special analysis techniq%es would he needed. However,
such models are almost never needed in practice.)

There are two general considerations which should guide the design of
the experiments and the analysis. Basically, these two considerations are
(a) the resources available and (b) the intended use of the results.

The resources available which Timit the measurements include equipment,
mathematical and computational sophistication, and time. In the absence
of elaborate equipment it may well be necessary to fill in with more
mathematical and computational skills. Time constraints 1imit both the
precision and range of the results and hence the range over which a model
can be verified.

The intended use of the results s equally important. For example, if

an experimenter has a requirement gor an oscillator to remain stable

in frequency to, say, a part in 10" for sample times from 1 to 10

seconds, and he discovers that his oscillator is, say, about 100 times
better than this, then that experimenter would be foolish to pursue his
measurements to a 1 percent accuracy tolerance--he can be sure that it's
adequate with a very rough experiment. Also, of course, one has greater
confidence in results which require less mathematical manipulation. Thus,
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one gains in designing experiments which come closest to reflecting the
intended use of the oscillator or clock when that use is known.

In the absence of overriding reasons to choose one analytical technique or
data-acquisition system over another, it clearly makes sense to choose

the simplest and easiest. Of course, with the simpler techniques there
are fewer opportunities for errors, and one can obtain reasonable confi-
dence in a short period of time. In keeping with the above, this paper

is confined to two analytical techniques as recommended in [1]: the power
spectral density of the fractional frequency fluctuations, Sy(f), and

the two-sample variance, GE(T). (The two-sampie variance is sometimes
referred to as the "Allan variance." Certainly there are values in
other techniques, but they are adequately covered in the literature and
will not be covered here. In particular, Rutman [3] provides an especi-
ally lucid comparison of the various analytical techniques.

Power Spectral Density of y(t)

Since the noise models suggested above were expressed directly in terms
of the spectral density, Sy(f), of the fractional frequency fluctuations,
y(t), an obvious approach 1s to estimate directly Sy(f). This is typi-
cally done either with analog techniques or by Sampxing y(t) at regular
intervals and converting to a spectral density with the aid of a com-
puter [9]. Systems also exist which perform the sampling automatically
and convert to spectral estimates without the need to transfer the data
to a computer.

0f course, the spectral estimates will not automatically be provided in
the same form as the model eltements given in Tables 1 and 2. One must
"fit" the parameters or noise levels to, say, a graphical representation
of the spectral density. In such a display, the perjodic elements of the
model are revealed in an especially lucid form. The presence of the
other systematic elements, however, is not so obvious and will probably
require special treatment to resolve.

With any of the measurement schemes there is often a problem in obtaining
reliable values of y(t) or an analog signal of y(t) not contaminated

by the noise of associated circuitry. For very high-quality signal
sources this is a major problem. Often one takes two or more comparable
oscillators and "beats" their signals together to obtain the difference
frequency between the two oscillators. This difference signal can be
amplified and analyzed by fairly conventional techniques provided this
difference signal also satisfies the constraints of (3), above. However,
the data are representative of both oscillators, and one must make some
model assumptions about how to divide the results between the two oscil-
lators. If three oscillators are intercompared in all possible combina-
tions, one can make a statistical separation of the results if one makes
use of a model assumption that the fluctuations of each oscillator are
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statistically uncorrelated with the others [10]. Various techniques for
acquiring data on very stable oscillators have been devised and can be
found in the literature [11,12,13].

Two-Sample Variance, Ti(f)

One of the most common ways of acquiring frequency data is by means of
a freguency counter which totals the number of cycles, n, of the signal
in a specified interval of time, 1. The sample frequency is then just
n/r, and large volumes of data are easily generated.

The quantity n/t can be related to y(t) by some straightforward mathe-
matical manipulation. One can define the average fractional frequency,
Yy > over the interval tk to tk + 1 by the relation

t, +T

Y = [k y(t)dt. (9)
t

k

where tk+1 = tk + T, and T is the interval between the beginnings of suc-
cessive averages. With the aid of (4) and (6) this can be written in
the form

t +L~ \\/\‘(t) e \//_‘
Yk “1 f ‘ — dt
ty
Tt +
1 k :

- o f jt dt-1 (10)
tk

o [0_(.*'#3') - k)] :

'\)’__)'_L 2= B -

Howgver, the quantity in the brackets is just the accumulated phase (in
radians) during the interval, divided by 2-. That ig, it is the number
of cycles, n, - Thus, (10) becomes

_ 1 n
o K, (11)

and n 15 just the k-th counter reading.
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At this point one might be tempted to do some simple and conventional

statistics on the y, . For example, one might compute a mean and a vari- !
ance for the set or perform a linear regression. However, this is

fraught with difficulty. The prob]gm arises fgom the model elements of

Sy(f) which are proportional to |f|™ and |[f| °; that is, flicker fre-

quency noise and random walk frequency noise. These types of noise do

not have convergent variances. That is, as more and more data are taken
and the variance is estimated with more and more data, the variance itself
grows, seemingly without bound.*

Clearly, some other statistical tool is necessary to analyze the data for
practical applications. Since the problem arises with adding too much
data to the variance estimate, the obvious solution is administratively to
1imit the data used for each estimate and then average all of the indivi-
dual estimates. By convention the data limit has been taken at only two
values of y, for each variance estimate [1]. 1In order to gain confidence
in this estimate, one averages many estimates of the variance. Lesage

and Audoin [2] have derived expressions for the confidence intervals for
the estimates of the two-sample variance estimated in this way for the
model elements listed in Table 2.

It is of value to explicitly state the computations involved with
the two-sample variance. Normally, statisticians estimate a mean of a
set of N values of a random variable, Us s by the equation

N

T DR

12
£t s (12)

The variance, 02, is estimated by the equation

Aes 2 - (13)

For the case N = 2, equations (12) and (13) can be combined in the
simple form

2T . (]4)

*One is not suggesting here that the frequency fluctuations of real
devices are actually unbounded. Rather, in a practical sense one is
unlikely to have the time (perhaps many, many years) to take enough data
to see convergence in fact. See ref. [8].
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. 2
At this point, we can define the two-sample variance, o (1), as the
(infinite) average of estimates of the variance for two’ samples.
That is, mathematically,

1 - — 2
N Zm STCEEITY
\y(> = Lim N m_‘-l _b‘iz k . (-]5)
Imn - @« k=1

In practice, of course, one gﬁﬁi@QEEE_U§<T) from a finite set of m

values of yk and cannot pass to the limit.

An additional restriction must be added. In eguation (9), above, yk

was the average from tk to tk + 7, but theznext average began at

Tpp = G T. The two-sample variance, :y(_), is defined to be
restricted to those cases for which T = <., That is, in words, each
sample of yk must be exactly adjacent in time to §%+] with no "dead

time" between measurements. There are times when this condition is
difficult to meet, and corrections must be made. Again, for the model
elements of Table 2, the corrections can be found in the literature [14].

h to the

measuring system, and this can influence the results. Again, it is a

A final point on 75(\) is to note that there is a bandwidth, f

matter of convention to specify fh with the measurement and to require
ZthT »» 1 for all measurements.

In practice one can determine a set of yk—values, each of which is an
average of the fractional frequency fluctuations from nominal. One can
then form an estimate, 75(;), of Tz(T) with the equation

J
o~ “‘-l - . 2
20y 1R (Yper = ¥p)
()= > _q__ki; kK (16)
k=1
For 1'_= 27, one can average adjacent values of yk and obtain a new
list, yk', where
_ ‘yék + 5_’ k-
Y = (17)
and hence determine &i(zf) based on m' = %~va]ues.




This process can be repeated for integer multiples of T out to
half of the total data length.

It is then normal to plot ‘¢o§(r) versus T on log-log graph paper.

Typically, regions of the plot can be approximated with straight Tine
segments (see Fig. 2). Since straight lines on log-Tog paper can be

represented by equations of the form U§(T> = A", one is fitting this
form of a model to the O§(T) estimates. However, this is essentially
equivalent to the models of Table 2 [1]. In fact, Table 3 shows that
the models of Table 2 translate into Oi(r) values varying as 1 to some
power. MWith the aid of Table 3, then one can estimate the levels, hu,
of the various noise terms; and, with the aid of the uncertainties
lJisted, obtain confidence intervals for the cy(m) estimates plotted.

Thus, the analysis by the use of the two-sample variance aliows one
to quantify the model parameters (i.e., to measure the stability of the
oscillator) and evaluate the adequacy of the model fit.

Although the two-sample variance has required a fair amount of space

to explain here, it is really one of the easiest analysis techniques to
use. Probably for this reason it is one of the most common techniques
used, also. The price one pays for this ease in analysis is some loss

in confidence in the results. If one is interested in the spectrum of
the frequency fluctuations, then it is probably true that direct spectral
estimates are slightly more precise for the measurement process than the
two-sample variance, but often this is not a critical issue. Often,
"final" results are simply reported as values of the two-sample variance
or its square root, since they can be readily translated into the spectral
densities via Table 3.

Spectral Density of Phase Fluctuations

One can estimate the power spectral densities of various quantities. Two
interesting quantities in addition to y(t) are V(t) and ¢(t) as defined
in equations (1) and (2). The rf power spectral density, Sv(f), is just
the spectral density one would obtain if he were to analyze directly

the output voltage, V(t), of the oscillator. Of course, it is important
whenever the rf spectral purity is important (e.g., in communications
systems). Included in S (f) are effects from th2 amplitude fluctua-
tions, ¢(t), as well as %he phase (frequency) fluctuations, ¢(t).
Typically, direct estimates of Sv(f) are limited in resolution to a

few Hertz of bandwidth and, thus, are not particularly useful for
evaluating Tong-term performance of the oscillator.
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For short-term fluctuations, one often sees estimates of the power spectral
density of the phase fluctuations, S%(f). Often it occurs for precision

oscillators that ¢(t) is sufficiently small that [1]
~ 4 \
S.(F) % 5 S (v, = f), (18)
V

where f > 0. That is, the sideband power at +f removed from the carrier
frequency, Vo is proportional to the phase power spectral density.

There is another useful equation relating Sﬁ(f) with Sy(f). Reference [1]
shows that :

£\
S () - (:— S, (). (19)
y o)

Often one measures the sideband power of the rf spectrum, SV(-\._;:_W < f),
and uses (18) to estimate S _(f). Occasionally, one devises a circuit

to obtain a voltage analog of +(t) and spectrum analyzes it directly
[13]. Equation (19) provides a link of Sm(f) with § (f) and hence
the rest of the oscillator model. ! J

Systematics

The power spectrum and the two-sample variance are useful tools for the
analysis of the random, non-deterministic elements of the model. Their
use in the presence of the systematic elements can cause problems [4,15],
and for this reason it is often important to remove the systematic ele-
ments before the noise analysis. It is important to emphasize that
"removal for analysis" does not imply that these elements are discarded--
they are recognized, evaluated, and remembered to be reported in the
final accounting of the model parameters. Thus, the overall analysis
operations are shown in Figure 3.

The methods of separation of the systematics will vary with particular
applications. For example, some oscillators display a nearly Tinear
drift in frequency (i.e., yk) with running time. For analysis by the

two-sample variance technique it is often important to "remove" this
first. This can be done by means of a linear least squares regression
to the y,, but the drift which is removed should be reported in the
final acCounting of the model. Again in the presence of periodic terms,
the two-sample variance will be very difficult to interpret. Thus, one
should either use direct spectrum estimation or devise an appropriate
technique to remove periodicities before a two-sample variance is used.
Some of the difficulties associated with removing systematics are dis-
cussed by Winkler [4].
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IV. USES OF THE VARIOUS MEASURES OF FREQUENCY STABILITY

The estimates of the frequency stability of an oscillator or clock

have many uses, spanning the range from research to procurement speci-
fications. As mentioned above, the form in which the model is expressed
should be influenced by the intended use. For example, if the noise model
for a given oscillator included flicker frequency noise as an element,
this could be equivalently expressed as a power spectral density varying

as 1f|_] or a constant o (t) with varying t. Which mode of expression
one uses 1is just a matte¥ of convenience.

It is probably true that theoreticians and researchers in the field of
frequency instabilities normally use the power spectral densities. It
is probably this historical fact which is the source of the mode of
expression of the random parts of the model in Tables 1 and 2. That

is, the random model elements were expressed in terms of power spectral
densities. Also, for diagnostics of oscillators, the use of power spec-
tral densities is very common. A spectrum analyzer can be a very
powerful tool in the design, construction, and evaluation of precision
signal sources.

Table 4 1ists some uses of the measures of frequency instabilities with
the commonly used method of analysis. Included in the methods of analysis
are references to ARIMA models [5]. ARIMA models provide a powerful and
convenient method of analysis, computer simulation, and prediction for
random processes and deserve special mention in addition to $ _(f) and

oy(x). Although they are not used to any great extent in the measurement

of frequency stability, they provide the only practical approach to
computer simulation of oscillator performance. It is possible to
translate from models based on Table 2 to ARIMA models directly [8,15].

V. SUMMARY

The measurement of frequency stability is the process of evaluating
(i.e., quantifying) a set of model parameters. The typical model ele-
ments found to be adequate to model the frequency instabilities include
(a) random, non-deterministic elements expressed in terms of power-law-
types of power spectral densities; (b) systematic terms like linear fre-
quency drift; and (c¢) environmental sensitivities.

Various mathematical techniques exist to fit these model elements to a
particular oscillator, but the most common are power spectrum analysis
aqd the computation of the two-sample variance. Other analysis tech-
niques have been studied and have important advantages for special
situations. For example, ARIMA models [5] provide the only practical
approach to computer simulation of oscillator performance.
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A measurement of the frequency stability of an oscillator includes the
values and uncertainties of the model parameters, the range of appli-

cability of the model, and a description of the experiment and analytical
techniques,




TABLE 1

Model Elements

1. Random (Noise) Elements
- Gaussian Noise Elements
-2 -1 2
Sy(f) = ho,[f]75 + h  [F]70 + ho [ f] o+ hy [
- Sporadic Elements
Sudden steps in frequency and/or time (phase)
2. Systematic Elements
- Linear frequency drift
- Frequency offset
- Time (phase) offset

- Periodic terms

3. Environmental Elements
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TABLE 2
Names of Noise Types
Frequency Dependence*
Power Spectral Power Spectral
Name Density of Frequency Density of Phase

White Phase Noise lffz
Flicker Phase Noise
White Frequency Noise

Flicker Frequency Noise

Random Walk Frequency Noise

N%_' < [f] < é;—i T = sampling
O L

o 0]

interval, and N = total number of data points.
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TABLE 4

Uses of Measures of Frequency Stability

Use

Generally Preferred
Method of Analysis

Theory/Research

Diagnostics

Qverall Performance Prediction
Simple Comparisons

Simple Estimate of PSD
Procurement Specs.

Computer Simulation

Prediction

Environmental Correlations
(Diagnostics)

Power Spectral Densities, Sy(f) & Sc(f)
Power Spectral Densities, Sy(f) & Sb(f)
Power Spectral Densities, Sy(f) & SQ(f)
Two-Sample Variances

Two-Sample Variances

Two-Sample Variances

ARIMA Models [5]

ARIMA Models [5]

ARIMA Models [5]
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Figure 1. A Model of the Measurement Process.
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Variance
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Figure 3. Analysis Techniques.
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