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ABSTRACT

The basic concepts of the special and general theories of relativity
arc described. Simple examples are given to illustrate the effect of
relativity on measurements of time and frequency in the near-earth
environment,
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Down to Earth Relativity

I. Introduction

As almost everybody knows, next Mrch 14th is the 100th
Anniversary of the birth of Albert Einstein, and so many
celebrations and symposia are planned for 1979 that I fear
all will become violently ill from an overdose of relativity
well before mid year. For now, I would like to distill some
of the salient aspects of both the special and the general
theories of relativity and to relate them to clocks and
frequency standards. After describing the basic concepts
of special and general relativity, I'll discuss the size of
the relativistic effects near the earth and the level of
their experimental verification to indicate how well one
might be able to rely on general relativity.

IT. Special Relativity

Special relativity is partly concerned with the percep-
tions of observers viewing rods and clocks in unif orm motion
relative to one another (and not accelerating with respect
to some "absolute”" inertial frame which we won't worry about
here). A key idea in Einstein's development of this theory
involves the concept of simultaneity. If, as Newton assumed,
there was a universal time coordinate that applied through-
out all space, then there is no problem in our agreeing on
a definition of the simultaneity of two events: We simply
compare the readings of our "universal®” clock. If the read-
ings are the same at each event place, we agree that those
events took place simultaneously.

If there is a spatial coincidence between two points,
then there's again no problem agreeing on a definition
of simultaneity because the points are co-located. We can
use the same watch at the same place to see whether the
events occur at the same time. That's no problem, with or
without a universal time.

If there were spatial separation between two events,
and if we could communicate between those two separate spa-
tial points with infinite speed, then again, we'd all agree
there would be no problem in deciding whether or not the
events were simultaneous.

However, if we have spatial separation and the communi-
cation speed is limited by the speed of light, as Einstein
thought, then, there is a problem. The definition of simul-
taneity is no longer intuitively obvious. 1In fact, as a
simple, down to earth, example can show, even with a rea-

550




sonable definition, there is not necessarily agreement on
simultaneity among observers moving relative to one another.

Now, let us define simultaneity for events at spatially
separated points with communication between them possible
via light signals. Concentrate for a moment on some given
frame (Figure 1).
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We're concerned about whether or not events that occur at
points A and B in this frame are simultaneocus. We can go
to the midpoint between these two points, a distance L from
A and B, and we can say that when an observer at point A
sees an event he or she (hereafter "he" for economy) immedi-
ately transmits a light signal toward O and when the obser-
ver at point B sees an event he also immediately transmits
a light signal to 0. If these two light signals arrive at
0 simultaneously, then we say that the events A and B oc-
curred simultaneously. That's a reasoconable definition of
simultaneity.

Now suppose we have two frames in relative motion.

Consider, in particular, a down to earth example: the
ground and a train (Figure 2).
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(Any who know my flying habits, know that I have a special
spot in my heart for trains even though they do tend to run
a bit late.) Let us single out two points, A and B, on the
ground, and set an observer halfway between. We follow the
same procedure on the train so that at a certain instant,
say to’ we have our train point A* coincident with A, our
obgserver 0* coincident with 0, and B* coincident with B.
Suppose that an event occurs at both A and B at t as meas-
ured in the "ground" frame and that light signalsoare trans-—
mitted from A toward O, and from B toward 2 at that instant.
As the light signals travel, the train is, of course, moving,
say in the direction from B to A. Thus, the light signal
from A is going to arrive at 0* while the light signal from
B is still travelling toward O*., A little while later, the
two signals arrive at O, simultaneously, so the observer at
0 would say events A and B occurred simultareously. But
our observer at 0O* would not agree because he received the
signals from A* and B* at different times. So one may con-
¢lude that if an event is simultaneous as measured accord-
ing to our definition in one frame, the event will not nec-
esgsarily be simultaneous as measured in another frame. Of
course, there is nothing special about any one frame: the
events could as well have been arranged to appear simultan-
eous to the observer at O0* as to the observer at O.

In fact, one may conclude more generally that simul-
taneity is dependent on tlemotion of the observer. Ein-
stein also thought that all observers moving uniformly with
respect to one another should be equally valid observers so

- there should be no preferred (inertial) frame. Further, he
felt that there should be no region of space-time singled
out as more important than any other; he therefore assumed
that space and time were homogeneous. This assumption im-
plies that a linear transformation determines the relation
of (Cartesian) space-time coordinates in one frame with re-
spect to those in another. Einstein made one more assump-
tion: the speed of light, ¢, is constant, such that the
game value would be measured by any observer no matter what
his state of relative motion. This seemingly provocative
assumption had, of course, been upheld with exquisite ac-
curacy in Michelson's and Morley's 1887 experiment.

To quantify these ideas, Einstein utilized a transfor-
mation which actually had been derived somewhat earlier, al-
though with a different and inferior intellectual founda-
tion, by Lorentz - the Lorentz Transformation:
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This transformation relates the coordinates x and t, defined
in a frame S, to the corresvonding cocordinates in a frame S%*,
where S§* has a velocity v with respect to S. One can sec
that these transformations are linear in x and t and in x*
and t*. Since neither S nor S* is "preferred", we should be
able to invert the eguations and obtain the samc description,
and, irdeed , we do, except for the sign inversion of the
velocity:

S S*
w* + yt*
X = ; N
[1 - (v/c)2]/?
) (2)
o= t* + (V/C;)‘) X*
(1 - (v/e)?1/e

Because S* has a velocity of v with respect to S, S has a
velocity minus v with respect to $*, Therc is nothing in

the transformation that singles out any one frame as special,
despite the theory's being called "special" relativity (for
a different reason, discussed below),

ILet us now turn to the guestion of clocks. What in
particular, does special relativity say about clock rates?
If there is a clock at rest in the frame S* and onc measurcs,
from frame S, the interval between two "ticks", the result
will be different from the corresponding mecasurement made by
an observer in frame $*. The numerical relation between
these measurements made in differcent frames is given by




At*

At = e . (3)
Yi- (v2/c?)

In other words, the observer in S thinks the interval between
ticks is longer than does the observer in S*, The ratio of
the two intervals is given by the Lorentz factor:

Y1 - (v2/c?) ) O (4)

Similarly, since these are symmetric situations, if the clock
had been in 3, and the observer in S* were to measure the inter-
val between two ticks, a similar relation would be obtained:

pex = At
Y1- (v2/c?)

. (5)

The point is that, with the clock in S*, one is actually com-
paring it to a series of (identical) clocks distributed in

S which the clock in S* passes as it moves with respect to
S; similarly, with the clock in S: it moves with respect

to the fixed (identical) clocks in S*. There is no paradox
in the relationship being symmetric. One may conclude from
this analysis that a clock always appears to run fastest in
its own frame. When an observer is at rest with respect to
the clock, he thinks the clock is running faster than when
he ié:ﬁniform motion with respect to that clock. This ef-
fect has been verified very well in the measurement of the
lifetime of unstable elementary particles. Such particles
in cosmic rays, and in accelerators, often move with veloci-
ties v very close to ¢, and this lifetime enhancement factor
can then be very large because the Lorentz factor tends to
zero and its inverse to infinity. Studies of mu-mesons have
verified this effect with very high accuracy.

III. General Relativity

The theory of relativity we just discussed is special
in the sense of being restricted. It is silent on the sub-
ject of gravitation; it is concerned primarily with physics
in (inertial) frames moving uniformly with respect to one
another. Einstein felt that concern was not sufficient; he




wanted to introduce gravitation. Einstein was unhappy with
Newton's theory of gravitation which had existed unchallenged
for about two centuries. Newton's theory did, of course,
have one small problem, There was a minute, but annoying,
discrepancy between the observations and the theory which be-
came noticeable in the late 1850's and was quite well estab~
lished by thecgerly 1900's. Einstein was not upset about
Newton's theory,because of a mere disagreement with observa-
tions; his concern was a matter of principle.

Einstein did not accept Newton's theory because it im-
plied action at a distance. In this theory, the force felt
by body A due to body B depended cn the location of body B
at the very instant that body A felt the force. But if no
signal can travel faster than the speed of light, how is
body A to know where body B was located at that instant?
This aspect was a severe drawback to Newton's theory in Ein-
stein's mind and he set about the development of an alterna-
tive. The process took about a decade. The main principle
upon which he based this general theory of relativity is the
so-called "principle of eguivalence”.

One can state this principle in various ways. A usual
way is to state that the effect of a gravitational field
locally is indistinguishable from an inertial acceleration.
The example usually given is that of an "Fingtein elevator".
Suppose a laboratory is enclosed in an opague small elevator
and placed in a gravitational field, such as on the surface
of the earth. The scientists inside feel the force of grav-
ity but cannot unequivocally identify it as such. They may
do any physics experiments and obtain numerical results.
However, suppose now the laboratory were taken away from the
earth and accelerated uniformly with a rocket. If the scilien-
tists in the laboratory were to repeat all their experiments,
the principle of equivalence states that they will get ex-
actly the same numerical answers, provided that the inertial
acceleration is exactly equal to the gravitational accelera-
tion.

Another statement of the principle of equivalence can
be given in terms of the ratio of gravitational to inertial
mass. Gravitational mass is the mass that appears on the
right hand side of the eguation that expresses Newton's law
of gravity:

Gm M

P = __———(z 9 (6)
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where G is Newton's constant of gravitation, m_ is the
(gravitational) mass of the body being acted ugon, M is the
(gravitational) mass of the body attracting m , and # is the
distance between them. The inertial mass is $he coefficient
of the acceleration, a, in Newton's law of motion:

F =m.a (7)

The ratio of these two masses, according to the principle, is
independent of the composition of the bodies and independent
of the mass of the bodies. It is a universal constant. This
principle, although not so named, was also accepted by New-
ton. 1In fact, he was the first to verify it quantitatively,
achieving an accuracy of approximately 1 part in 1,000.

What can we infer from this principle of equivalence?
One of the things Einstein inferred was that the trajectory
of a particle could depend only on the geometry of space and
time. By the principle, the trajectory did not depend on the
particle itself, on its composition, or on its mass (except
for the "back reaction”" which I ignore here). It doesn't
matter whether we have a pea, a flashlight, or whatever; it
will move on the same trajectory because it will be affected
in the same way as any other mass. Thus, Einstein reasoned
that one could talk about the trajectories being merely a
property of the geometry, and having nothing to do with the
particular object that was moving along the path.

What determines the geometry? Einstein felt that the
geometry should be determined solely by the mass, or, more
precisely, the mags-energy, distribution in the universe.
But isn't it contradictory to say that the path of the par-
ticle doesn't depend on the particle, only on the geometry,
and that the geometry depends only on the mass distribution?
Certainly the particle is part of the mass distribution.
Yes, but if one considers the particle to have an infini-
tesimally small mass, it won't affect the geometry, and to
that extent, these statements are consistent. But this
"closed loop" aspect is « Key te Ewstein's theervy.

Einstein may have been guided in developing his "field
theory" for gravitation by analogy with Newtonian physics.
In Newtonian physics, one obtains the gravitational poten-
tial from the mass distribution. In other words, the gravi-
tational potential everywhere in space is determined by the
mass distribution. In fact, the potential, ¢, is determined
by Poisson's Equation:
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V2 = 4up , (8)

where o is the mass density. Only the gravitational poten-
tial appears on the left side and only the mass {(density) on
the right side. This equation is a linear, second-order,
vartial differential equation for &. Einstein in effect
generalized this purely spatial expression, to an analogous
space-time expresgsion that alsc allowed the geometry to be
non~EBuclidean. He wused Riemannian geometry and developed

an analogous eqgquation where, on the right side, the mass den-—
sity 1s replaced by the energy-momentum tensor:

(q ) 28'U’T H = 1 - 4. (9)

ERVERESVRV 1

2As in thes Newtonian case, only the right side contains the
"mass" terms; only the left side contains the "gecmetry”
dependence. The geometry here is defined in a metric space.
The so-called "metric tensor" g . in egsence ecxpresses the
"connection" between neiqhborin%vpoints irr this space-time:

Al

ds® = =5 (10)

b

dx"dx”
Y

The interval ds is the "distance" between +two infinitesimal-
lv separated points in the space-time. To evaluate ds’”, one
sums over all wvalues of the two indices 1 and v which run
from 1 to 4 and correspond to the three spatial and the one
temporal dimension. In Cartesian coordinates, in Buclidean
three-dimensional space, ds’ = dx’ + dv? + dz*; Equation
(10) is the generalization for a Riemannian metric spacc.

Einstein made other assumptions, namely that this
energy-momentum tensor 1s a conserved quantityv in a gsense
analogous to the conservation of energy and momentum in New-
tonian physics. Further, he limited the derivatives on the
left side toc second-order derivatives ¢f g ., in analogy to
the second-order derivatives on the lcft side of the Newton-
ian equation (8). UWith thos=s assumptions, one can unigquely
determine the left side up to a term proportional to the
metric tensor. The coeflficient of this term, the so-called
cosmological constant, Einstein first took to be zero, a
position he deviated from later when he thought the universe
was static; still later, he crecatly regretted this temporary
deviation. (It is now cenerally assumed that the cosmolo-
gical constant 1s zerco.)




Because of symmetry (T g = T . ), Equation (9) represents
only 10 independent equatioﬁs, not"16. These are Einstein's
field equations which he used as the basis for calculations.
In Newtonian Physics, the field equations were not enough.
Equation (8) indicates how the gravitational potential can
be determined, but it doesn't tell one how to calculate the
paths of light rays and particles. In fact, Newton never
said anything, as far as I know, about the effect of gravity
on light rays. As for the effect of gravity on massive ob-
jects, Newton had a separate assumption, his equally well~
known law of motion, given in Equation (7). In relativity,
the corresponding equations are the equations for geodesics
in four-dimensional space-time. A very intriguing aspect of
the general relativistic formulation is that a separate as-
sumption for the equations of motion does not seem to be
needed; the equations of motion follow from the field equa-
tions themselves. The hasic reason that makes this result
possible, though by no means guaranteed, is that the field
equations of general relativity are non-linear. The New-
tonian field equation, by contrast, is linear. The terms
hidden in G Y in Equation (9) are, in fact, non-linear ex-
pressions ih’terms of the metric tensor guv.

Iv. Magnitude of Relativistic Effects

What of the magnitude of the relativistic effects we
might expect? We know, as Finstein also knew, that Newton-
ian physics is a very good approximation, at least in our
neighborhood. S0 the Newtonian eguations must be, in some
sense, the first approximation for the solution to the rela-
tivistic equations. Deviations from Newtonian physics ap-
pear in terms proportional to v?/c? as we saw from the
Lorentz Transformation; in the general theory of relativity,
deviations appear in terms proportional to the factor,
GM/c’r. The quantity GM/c® has the dimensions of length and
is often denoted by r_ and called the gravitational radius
of the body. We can 8valuate r near the sun, say, to de-
termine theorder of magnitude of the relativistic effects
there that are due to gravitation. We find that, for the
sun, r_ = 1.5 km; by contrast, the radius of the sun is
about 900,000 km. Thus, we can expect relativistic effects
to appear at the level of two parts per million,

What about effects near the earth, which are of more
direct concern for us? We find that the gravitational radi-
us of the earth is near half a centimeter. In other words,
the earth would have to be compressed down to half a centi-
meter before it would turn into a black hole. The radius of
the earth is about 6 x 10° centimeters, so relativistic
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effects near the surface of the earth could be expected to
be on the order of eight parts per billion, not terribly
large.

Let us now try to describe the relativistic effects
quantitatively. To solve the field equations to determine
the metric tensor g _, is no easy job. There are very few
problems that have Béen formulated where g, ., can be deter-
mined in closed form. The most famous cne, solved by
Schwarzschild very shortly after Einstein published his
theory, is for a spherically-symmetric, static mass distri-
bution. The solution exterior tco that mass can be written

ass
. rorg iGT\‘_[‘l . .
2 N PO LT Wo R et - ye?agt?
dg” = ~(1 - 2aZg z}._{m,) + ...y ctdt
+ (1 + 2»’GM .o (ar? + oridef o+ r?sinfodety, (1LY

)I'CL

where, as stated above, ds”® 1s the infinitesimal space-iime
interval and where the non-vanishing components of the met-

ric tensor are the coefficients of dt , dr-, etc. These
coefficients, as here, are often written az a power series
in GM/czr. In general relativity, the parameters, «, 5, and
Y, don't appear; they are Identically one. The higher-corder
terms, indicated by "...", do not aprear either; they are
identically zero in generali relativity. The reason for
writing the metric in this "generalized" form is to facili-
tate the testing of the thecry. By a least~sguares match

of the predictions of the theorv to the results cf ohserva-
tions made, say, in the solar system, one can estimate the
values of these parameters. If the estimates turn out to

be unity to within experimental uncertainty, we conclude
that the observaticons ars consistent with general relativity.
If they aren't, then general relativitv is in trouble.

Given the metric tensor and the equations of motion, one
can then calculate explicitly the paths of test particles and
light signals. The ralculations are a bit intricate: one
cannot in general obtain "ciosed-form" solutions. One often
uses a perturbation expansion in powers of r /r where the
first approximation represents the Newtonian“sclution and
the next higher approximation, the so-called post-Newtonian
solution.

[
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V. Simple Examples of Relativistic Effects on
Frequency and Time

Let us, finally, turn to the predicted relativistic
effects on the frequency of light signals and on clocks. We
will treat first a very simple example to show how one can
use elementary reasoning to obtain an answer, without employ-
ing the full armamentarium of general relativity, We'll need
only to apply the principle of equivalence. Thus, suppose we
have a transmitter and a receiver that are stationary but
separated. Let the receiver, or observer, be on the surface
of the earth; let the transmitter, at an altitude H above
the observer, transmit a signal with fregquency £ (see Figure
3). The question is, "What frequency does the observer meas-
ure?"
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An easy way to answer this question is to uze the
principle of equivalence. The system, or laboratory, we set
up is equivalent to another where we replace gravity by an
acceleration: We accelerate the laboratory at a value a,
equal in magnitude to the acceleration g of the earth's
gravity. We keep the observer and transmitter separated by
the same distance H. At some instant, the transmitter sends
a signal which the observer receives a short time, At, later.
Let the velocity of the observer, at the instant of recep-
tion of the signal, relative to his and the transmitter's
velocity, at the instant of transmission of the signal, be
Av. The value of Av will be egual to the acceleration of the
laboratory multiplied by the time interval between trans-
mission and reception. Thus, using the principle of equiva-
lence,

AV = aAt = g(g) (12)
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where At is just the time taken by light to travel the dis-
tance H {At = H/c), and where a = g. These are all approxi-~
mate relations, valid to the first order in the small quan-
tities. The frequency shift, & f = £’ -f, of the observed

frequency relative to the transmitted frequency, £, is like

a first-order Doppler shift and is given by

AE A gH
£ c o2 (137

where we have substituted from Equation {12). This change
in fregquency representsg, in fact, a violet shift.

Thus, the transmitter, at altitude H, sends a signal
at frequency f£ and the observer receives a signal with a fre-
guency greater by Af. We note that the change in gravita-
tional potential between transmitter and receiver 1s just
the change in-GM@/R@, the gravitational potential for the
earth: '

IAR, = gH (14)

where M and R_ are the mass and radius, respectively, of
the ear%h; and AR, is equal to H, The fracticnal change,
Af/f, in freguency and the accumulated difference, AT, in

apparent clock readings after elapsed time 7 are given by:

AE AD

TET T

4i C2

{15

. AQ [

Iyt - - — 1

?
c

In other words, if the observer had a clock identical in con-
struction to that governing the transmitter, and 1f the ob-
server knew the value of the transmitted frequency, as de-~
termined at the transmitter, by the clock there, the cbser-
ver would infer that hie clock was losing time relative Lo
the clock in the lower gravitational potential of the frans-
mitter. Of course, this "relativistic" loss can easily be
taken into account in any comparison.

Let us consider another example. Suppcse a frequency
standard were in a circular orbit about the earth, and sup-
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pose, incorrectly, that the first-order Doppler shift and
the earth's rotation were negligible. Suppose, further,
that a signal of frequency, f , is transmitted by the satel-
lite and received on earth, aRd that the frequency of that
signal is measured on earth, with equipment governed by a
clock identical in construction to the clock in orbit that
governed the transmission of the signal. Under our assump-
tions, the frequency, f , measured on earth will be related
to £ by: e

[1+ (20 /c?)11/>

£ =
e

£ , (16)
(1 + (20_/c?) - (vs/c)2]1/2 5

where the subscripts s and e refer to conditions at the sat-
ellite and on the earth, respectively. Thus, the difference,
£ =~ f£_, in frequency is determined by the motions of the
bSdies®and by their gravitational potentials. Recall from
Equation (2) that for the motion itself, we have the factor
(1 - v?/c?)*'/?; but here, where we are considering frequen-
cy rather than time, this factor enters with the plus half
power rather than with the minus half power. As we saw in
the first example, although not in this more exact form, the
gravitational potential also affects the frequency; the ef-
fect was linear in (¢ _/c?) with a coefficient of unity. This
result can be recovered here, for (¢ /c?)<<1l, by expansion

of (1 + 26 )2, gince (6_/c?), (@ 7c?), and (v*/c?) are all
small near the earth, we eXpand the right side of Equation
(16), rearrange, and obtain(uwhthcahiofcmnﬂrwﬁmwo{eﬂwyi’f

£f - £ 3GM GM

,.A...E — __e.._.,._,..__.,,.___s o @ — $
f fS 2(RGB + H) RGB
10 3R@
= 3.5 x 10 Tﬁ;bimﬁT 2 r (17)

where H is the altitude of the satellite. The ratio

Af/f, the apparent fractional change in frequency measured
by the observer on the surface of the earth is thus of the
order of a few parts in 10!°, where for H less than half

the radius of the earth we observe a violet shift, and for

H greater than half the radius of the earth we observe a

red shift, Above half an earth radius, the effect of the
motion dominates over the effect of the gravitational poten-
tial, and vice versa, below half an earth radius. With the
combination of the motion and the gravitational potential
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effects, we would measure either a violet shift or a red
shift, depending simply on the altitude of the satellite.
Were we to observe from a lower potential, that is, from a
position higher above the earth than the satellite, we would
measure a red . shift. Remember, however, that this entire
develcopment must really be modified for the observer's motion
and for the first-order Doppler shift, both of which were
ignored in this example.

IT, Validity of the General Theory of Relativity

Now let us address briefly the question of whether or
not general relativity is a valid theory. It is clear in
principle that at some level general relativity must "break
down", because it is incompatible with quantum mechanics.

No one has yet been able to formulate a satisfactory quantum
theory of gravity, although there are some good ideas cur-
rently being explored. As one makes observations on a more
microscopic scale, quantum mechanics plays an increasingly
important role. At what length scale will quantum gravity
actually be important? One answer is based on the evalua~
tion of the "fundamental" length that can be formed from

the gravitational constant, the speed of light, and Planck's
constant, h, which is a measure of the importance of quantum
phenomena. This length is called the Planck length and is
given by:

12

1.6 x 1077 %¢cm ' (18)

where, in accordance with convention, the "slash" on h de-
notes division by 27m. It is clear for present PTTI purposes
that one need not worry about such length scales. It will
be a long time before anyone will conceive of practical ex-
perimental procedures that will expose what happens at these
length scales. Quantum theories of gravity currently under
study center on so~called "super gravity", which tries to
unite general relativity and guantum mechanics in a "higher
level” theory for which general relativity will be the ap-
propriate macroscopic limit. Testing the validity of these
ideas is hopelessly beyond present experimental capabilities.

In the macroscopic world of the solar system, relativ-
istic effects are very small. 1In addition, they have been
verified by measurements to one percent or better. The rela-
tivistic effects of motion and gravity on clock rates, in
particular, have been verified to approximately one hun-
dredth of one percent already. A relativistic effect on
trajectories, the prediciton of a non-Newtonian advance of
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the perihelion position of Mercury's orbit, has been verified
to about half a percent. The predicted deflection of light
rays, and the predicted increase in echo delays, have been
verified to the order of one percent, and a few tenths of one
percent, respectively.

There is no problem, in principle, in applying the gen-
eral theory of relativity to the solar system, and, in par-
ticular, to the earth environment at a useful level of accur-
acy. The situation is all very well defined by the prin-
ciples of the theory. Unfortunately, how to apply these
principles is not always so clear to those who try. As one
consequence, apparent paradoxes have appeared in the liter-
ature, as well as many other errors. But, at the level of
accuracy of interest to PTTI, these are the problems of
those doing the calculations, and not the problems of the
theory. The theory is guite reliable and often useful at
this level of accuracy.
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QUESTIONS AND ANSWERS

CARROLL ALLEY, University of Maryland:

I think it 1is appropriate for. this..audience ta realize that the
first practical applications of Einstein's ideas in actual engineer-
ing situations are with us in the fact that clocks are now so stable
that one must take these small effects into account in a variety of
systems that are now undergoing development or are actually in use
in comparing time woridwide.

It is no longer a matter of scientific interest and scientific
application, but it has moved intc the realm of engineering necessi-
ty. So talks like this are very important to try to acguaint the
comnunity with these fundamental orinciples, because the uncertain-
ties have, indeed, arisen in tack of understanding of what is going
on, rather than in the basic ideas.

SHAPIRO:

Yes, in fact I left out one slide where ! meant to show what the ac-
cutulated effect, say, in a day would he if vou took two identical
clocks, put one on the ground and one in the spacecraft in orbit
around the earth at some nominal altitude.

0f course, we can cance! it out as we saw, but what would be
the order of magnitude of the accumulated difference in the readings
of the two clocks per day? And it is about 20 microseconds. Sc it
can be quite substantial.

O0f course, that is a iittle bit of a spoof since we don't yet
have such extremely stable absolute standards, so if you put a clock
in orbit and just measure its rate in orbit, then you would, in ef-
fect, automatically correct for these relativistic effects, provided
it was a circular orbit and provided certain other things were true.

But when one gets down to the tens of nanoseconds Tevel, and
one worries about eccentric orkits and various other things, then it
is true that these effects, small as they are, are not negligible
compared to the accuracy that you can achieve with clocks.

The first really practical application that I krow of that
people are worried about is 1in the GPS systen, where the effects are
of the order of tens of nanoseconds for scme of the applications.

ALLEY:
For the GPS, albeit a 12 hour orbit, it is 38 nicroseconds per day.
SHAPIRO:

That is true. But [ say that you can get rid of that very easily by
the redefinition of rate.
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ALLEY:
Yes.
SHAPIRO:

But you still have to worry even in comparisons within a day of the
order of tens of nancseconds.

ALLEY:

If T may be permitted one more comment: In the summer of '77 we
actually carried out the Einstein falling-elevator experiments using
the earth falling towards the sun. We transported clocks essen-
tially from the floor to the ceiling by carrying them from the nor-
thern hemisphere to the southern hemisphere at the time of the sum-
mer solstice, when the axis is tilted toward the sun. We verified
for clock rates that the potential of the sun does not effect the
clock rates between floor and ceiling in the freely-falling elevator
earth. Thank you.

SHAPIRO:

There are many experiments, as I alluded to, that verified various
aspects of general relativity. I felt I couldn't do justice to all
of them, and therefore [ did justice to none of them.

CHARLES MARTIN, Defense Mapping Agency:

I would like to make one comment here because I think it's quite
important in terms of our potential utilization of the global posi-
tioning system. I don't think there is any question about the
microsecond errors if you do not take them into account.

But I think it 1is certainly important that we all realize that
the capability, the theory, is adequate to take into account rela-
tivity errors to the level of, say, 20 or 30 nanoseconds.

SHAPIRO:

No. To much better than that. My main message was the theory makes
very specific predictions and they have been verified to a small
fraction of one percent as far as clocks are concerned.

So, simply on the experimental verification level, you can be-
Tieve them to the sub-nanosecond level. But as far as the theory is
concerned, there is no good reason to believe it breaks down there
just because you haven't tested below there. There is no theoreti-
cal reason that it should break down just below. And it does make
very specific predictions. The problems arise, as [ said, when
people don't fully understand the theory when they try to use it in
their calculations.

ALLAN, Natijonal Bureau of Standards:

T again think for this audience, along the Tines Professor Alley
mentioned, that for the GPS user in the future, because the earth is

566




DR.

MR.

DR.

DR.

spinning, these effects become very significant. If you synchronize
two clocks on the surface of the earth via portable clock and via
satellite (by GPS), and ignore that the earth 1is spinning, assuming
the Efinstein synchronization technique, you can make errors of the
order of hundreds of nanoseccnds. So one has to be careful.

SHAPIRO:

That is right. One has to be careful. But I am saying that the
theory is very clear. I could work out any example, including the
spinning earth, including flying clocks westward against the di-
rection of earth (as was done already) and eastward with the direc-
tion. And there are differences there, because you are adding to or
subtracting from the velocity of rotation of the earth. ATl of
these things have been worried about and have been calculated and
there is no problem, as long as you really understand the theory
that you are applying.

THOMAS MCCASKILL, Naval Research lLaboratory:

We have a talk this afternoon in which we will present some results
with the NTS satellites. In view of the high amount of interest
that has been shown on the relativistic effects, we will bring a
couple of slides that Mr. Buisson presented last year, which show
the difference in frequency between a cesium clock measured on the
ground and a cesium clock that was placed in orbit, which verified
the first order relativistic effect.

ALFRED KAHAN, Rome Air Development Center:

In your opinion, then, 1is there any experiment that still needs to
be done to further prove the general theory of relativity with
satellites, flying clocks? Or 1is the theory so good that we have
confirmed to the one-percent or half-percent Tlevel that we don't
need any more experiments?

SHAPIRO:

[ am a firm believer that physics is an experimental science and
when one has the opportunity to test to a higher level of accuracy
one should, provided it doesn't cost a major fraction of the gross
national product.

And one has to draw some reasonahle position there between do-
able but hugely expensive and do-able but not such a great gain. I
believe in experiments if you can make an order of magnitude gain in
the experimental Timit: It is worth a reasonable amount of money.

[f you are going to make a ten percent cain, I personally
wouldn't bother doing the experiment. There are some effects of
general relativity that haven't been observed at all at any level
that are important.

For example: The dragging of dinertial frames due to the
spinning of the massive body were predictions worked out from
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general relativity as long ago as 1918. They have never been veri-
fied because the effects are very small.

There are several possible ways of getting an experimental
handle on this with earth experiments, including flying spinning
gyroscopes and so forth, but they are technically very difficult and
very expensive to perform, and it 1is not clear yet that we are
really ready to do that.

ALLEY:

[ would like to adopt a slightly different stance. The confusion in
the understanding of the fundamental principles is widespread even
among authorities.

I mean, there are recently published papers in the literature
making predictions coming from people who should know better. For
example, on this falling earth experiment I mentioned, one of the
leading theorists in Europe in general relativity published in Phy-
sics lLetters the flat statement that clocks would run at different

rates at the North Pole and South Pole at the time of the solstices.

This 1is flat wrong, which he now admits. But there is a tre-
mendous amount of intuition that is lacking in understanding general
relativity, which we have in electricity and magnetism. And I would
submit that the performance of clock experiments that we are now
able to do will contribute vastly to developing this kind of intui-
tion.

In a certain sense the clocks in gravitational fields are
analogous to magnetic filings in magnetic fields. And it is quite
important to do these experiments when one is able to do them.

SHAPIRO:

I don't like to disagree with my colleague, but I find that I must
disagree strongly with what Professor Alley just said. I find that
no amount of experiment can really take people away from wrong no-
tions. For example, the twin paradox has created fanatics in great
numbers and no amount of experiments quells that at all.

As far as theoretical physicists like the one to whom Professor
Alley alluded, and whom he didn't mention and whom I won't mention,
he was perfectly well convinced that he had made an error simply on
a theoretical basis. It didn't take an experiment to convince him
that he made an error.

It was perfectly clear that he just didn't apply properly the
relativistic principles. Many people, if they are reasonable, can
be convinced by the theoretical arguments, and having exposed their
wrong step, they admit it.

The non-fanatics will be convinced by the theory, and the
fanatics won't be convinced by anything.
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