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ABSTRACT

This is a largely tutorial lecture on the basic ideas
of General Relativity - Einstein's theory of gravity as
curved space-time -~ emphasizing the physical concepts and
using only elementary mathematics. For the slow motions and
weak gravitational fields which we experience on the earth,
the main curvature is that of time, not space. Recent
experiments demonstrating this property (alley, Cutler,
Reisse, Williams, et al, 1975 and Vessot and Levine, 1976)
will be briefly reviewed.

The extraordinary stability of modern atomic clocks
makes it necesgary to understand and to include the
fundamental effects of motion and gravitational potential on
clocks in many practical situations. Thegse include the
NAVSTAR/Global Positioning System and time synchronization
using ultra stable clocks transported by aircraft.

In future system such as global time synchronization
using c¢locks in low earth orbit, the accuracy may be limited
by uncertainties in the calculated proper time of the
travelling clock, rather than by intrinsic clock
performance.

INTRODUCTION

This talk will be in the same general vein as one I gave at the
time of the Einstein Centennial two and half years ago at the 33rd
Annual Frequency Control Symposium ', so I apologize to those of you who

* This paper is an edited version of a tape recording of the invited
tutorial talk.

C., 0. RAlley, "Relativity and Clocks", Proceedings, 33rd Annual
Symposium on Fregquency Control, U.S. Army Electronics Research and
Development Command, Fort Monmouth, N.J., pp 4 -~ 394 (1979). Copies
available from Electronic Industries Association, 2001 Eye Street, N.W.,
Washington, D.C. 20006.

Reference should be made to this paper for details of some resgults
given here and for further references.
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may have heard that talk. But for a tutorial talk, perhaps it is
excusable, or even desirable, to repeat important things. The emphasis
here is somewhat different from Reference 1, however.

The concept of proper time in relativity is really central to the
whole subject. The proper time is the ordinary time actually kept by a
clock, its own time, or, in German, eigenzeit. The high stability that
has been achieved by the time keeping community with modern atomic
clocks allows the effects of motion and gravity to be actually measured,
with results in agreement with FEinstein's predictions. Einstein's ideas
are no longer just a matter of great scientific interest, actually
forming the bhasis of the view of the universe that we now have from
modern astronomy, but also a matter of practical engineering concern.
These timekeeping applications are the first practical applications of
General Relativity which go beyond Newtonian gravity.

The subject can be understood. In the past, the subject was
largely taken over by mathematicians, from about 1920 wuntil the
1950's. The central physical ideas were rarely brought to the fore.
The ideas were obscured by the Tensor Calculus with all of its bristling
indices and the higher mathematics associated with differential
geometyy. The actual way in which Einstein got to these concepts was
generally ignored in the teaching of the subject (at the few places
where it was taught) and those of us in the academic community have to
take some responsibility for not having understood these things properly
and for not having taught them to many generations of engineering and
physics students. But that situation has now changed.

In addition to these practical applications, many modern
discoveries in astrophysics require the use of General Relativity in
order to comprehend them. There's the whole notion of compact objects
with the extreme being the black holes which probably exist. They may
be the power sources of guasars. Te energy conversion resulting from
matter falling down the deep potential well of a black hole is something
like 30% of the rest energy compared with only 0.7% for thermo-nuclear
fusion. ‘The expanding universe could have been predicted by Einstein,
except that it was uncongenial to the world view in the teens of our
century, and he modified his equations to avoid it. It was probably his
greatest mistake (in his own evaluation) but General Relativity does
describe its growth from the "Big Bang". The changes in the orbit of
the Binary Pulgsar”™, revealed by precise timing of its periodic radio
pulses with atomic c¢locks, seems to show the emission of the gravity
waveg predicted by General Relativity. We will hear more this afternoon
about attempts to detect low frequency gravity waves left from the early

2 J. M. Weisberq, J. H. Taylor, and L. H, Fowler, "Gravitational Waves

from an Orbiting Pulsar", Scientific American, Vol. 245, No. 4, pp. 74
-82 (October, 1981).




universe, using the atomic clock controlled tracking of interplanetary
probes, opening a new window on the universe, if successful.

Now, let me give you some good introductory references. I like to
approach the subject from an historical point of view, the way I think
Einstein actually developed it. There's a great book by Banesh Hoffmann
called Albert Einstein: Creator and Rebel (Plume Books, 1973). I
recommend this to all of my students and I recommend it to you to read
both for Einstein's physics and for his life. Nigel Calder has recently
written a popular book called Eingtein's Universe (Penguin Books, 1979)
which was made into a two-hour BBC television film of the same name,
which is highly recommended. I'm going to use an approach to relativity
called the k-calculus by its developer, BHermann Bondi. It is described
in a book called Relativity and Common Sense (Dover Books, 1980) and in
another, Assumption and Myth in Physical Theory (Cambridge University
Press, 1967). On the astrophysicsg, there are excellent books by Robert
Wall, Space Time and Gravity: Theory of the "Big Bang" and Black Holes
(University of Chicago Press, 1977), and by Roman and Hannelore Sexl,
White Dwarfs and Black Holes (Academic Press, 1279).

The plan of the talk is the following. T will give you an
introduction to General Relativity by adding gravity to special
relativity through Einstein's Principle of Eguivalence. This is the
historical approach I mentioned, Then I will discuss some recent
experiments which have measured the relativistic effects on clocks.
Thigs include experiments with aircraft and lasers in which Len Cutler
and I collaborated with some of the students and staff at Maryland, with
the support of the Navy and Air Force, and, very briefly, the rocket
probe experiment with a Thydrogen maser and microwave frequency
detection, which Bob Vessot and Marty Levine have done with the support
of NASA. Finally, T will talk about the influence of these effects in
some actual systems: the NAVSTAR/Global Positioning System, the LASSO
(Laser Synchronization from Stationary Orbit) experiment, and a
technique called the Shuttle Time and Frequency Transfer (STIFT), which
gome of us are planning and hoping to persuade NASA to develop. The
relativistic effects on clocks transported by air craft will also be
digscussed.

REVIEW OF SPECIAL RELATIVITY

Figure 1 shows Einstein in his study at the age of about 40,
geveral years after he completed General Relativity. (Some of us take
great solace from the disorderliness of his shelves.) Einstein began to
think about relativity when he was 16 years old. Figure 2 shows him at
age 16 in a classroom in Aarau, Switzerland (he is on the far right).
He began to think along the lines of: "what would happen if I could
catch up with a beam of light? Suppose I were looking at a mirror and
could run with the speed of light, what would I sgee?” At his last
lecture in Princeton in 1954, before he died in 1955, I was privileged
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Figure 2

to be present when he reminisced
about some of these things. He
mentioned that This independent
study of Maxwell's Electro-
magnetic Theory as an under-
graduate gave him the answer:
that if you could catch up with a
beam of light, you would see a
static electric field and a
static magnetic £field at right
angles to each other, with no
charges and no currents
present. But Maxwell's theory doesn't allow that. Therefore, you can
never catch up with light. No matter how fast you move, it recedes with
the speed ¢ = 3 x 10 m/sec. This was one of the real clues to his
realization at the age of 26, at the Patent Office in Bern, Switzerland
(Figure 3), that time is not absolute, and that this is the key to the
question: How do you reconcile the classical Principle of Relativity,
that any inertial observer should formulate in the same way the laws of
physics, with the notion that the speed of light should be the same for
all inertial obhservers?

Figure 1

Einstein wanted to have this restricted Principle of Relativity
(restricted, that is, to inertial observers) include all of physics, not
just mechanical physics: electro-magnetism and everything else. He also
wanted to say that the velocity of light should be the same for all
observers independent of the speed of the source. Now these
regquirements seem incompatible, because, if you imagine two space
shuttles going by each other (Figure 4), each with a light source in the
center of its bay, which emits beams of light, forward and backward, A
would want to see the two waves spreading out with the velocity ¢ in
each direction. But then A would observe, from his point of view, that
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in B's system the light going forward would be travelling, with respect
to B, with a smaller velocity than the light going backward, But B
ought to be able to maintain the same point of view ag B! How do you
reconcile these things? Well, in 1905, at the age of 26, according to
Hoffman, Einstein sat bolt upright in bed one morning, after having
pondered these matters for ten years, with the realization that time is
not absolute; that the simultaneity of separated events is relative to
the inertial observer, This was the key to reconciling this whole
thing. It has had profound consequences for all of physics. Let's
formulate these ideas in terms of Minkowski space-time diagrams, and the
gso=~called k-calculus.

In Figure 5 time is plotted vertically in units of nanoseconds, and
distance horizontally in units of 30 centimeters, so that a light pulse
has a slope of 45°. The dashed line is the worldline of a light pulse
that would be sent out and reflected back from some event. Events are
the raw materials of relativity: the time and place where something
happens, If you send the light pulse out at a certain time, tas and get
the pulse back at a time, ty, then you would say you'd be sending out at

ty = t - x/¢, and getting it back at ty = t + x/c, where x 1g the
position coordinate and + 1is the time coordinate of the reflection
event. The time of reflection for you is naturally taken as midway

bhbetween the emission and reception events,




t=t, +hie, -t =t vl mThe =N+ e
T™is is Einstein's original prescription for defining time at a distance
when comparing clocks which are not adjacent to one another, which he
gave in 1905 in his paper on restricted relativity. You get the
distance of an event by taking the difference between the emission and
reception times and multiplying by the speed of light and dividing by 2:

X = (t3-t1) c/2 .

This is the basis for all the laser ranging measurements, including the
ranging to corner reflectors on the moon™, whose motion has heen
monitored since 1969 with an accuracy of ten centimeters or so. It
turns out that this method of comparing time between distant clocks is
not only conceptually very clear, but it's practically the bhest way, the
most accurate way, of comparing distant clocks which we know at the
present time.

Modern observers now would
be eqguipped with atomic c¢locks,
short pulze laserg, fast photo
detectors, and event timers to
measure the epoch of arrival of A B
light pulses. Let's consider two )
such observers, A and B, B moving t 1
with some relative velocity with s
respect to A, as shown in Figure /,’

6. A sends out pulses with the 4 f"’ﬂ}kT
separation T between them, and L

it's clear that they will be T {/’
received by B with the separation
kT, because of his motion. It is -
very easy (See Ref. 1) to show 0 X
that %, this relativistic Doppler < \\\

factor, is -

ala

3

o=

Locus of Events which A
regards as simultaneous
with his origin event t=0

ofx

[ 1 + v/c ]1/2

k= 1 - v/c

Now, how would A define his axis
of simultaneity? (Refer to Figure
6) He would send out a pulse and
get it reflected back. If it is Figure 6
sent out at the same time before
his origin event as the time he

3 C. 0, Alley, "Apollo 11 Laser Ranging Retro—Reflector (LRB)
Experiment: One Researcher's ©Personal Account”, in Adventures in

Experimental Physics, edited by B. Maglich, o 1972.
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gets it back after his origin
event, he would say that the
event 1is simultaneous with his
origin event. This procedure
defines his X axis, the locus of
events which he regards as
simaltaneous with his origin
event. B can do the same
thing. But both A and B measure
the same speed of light,
represented by the dashed lines
in Figure 7, so that when B sends
out his pulse and gets it back
the same time before his origin

- Locus of Bvents
which B regards
as simultaneous
with his origin
event -0

Spozo - Time

event (taken to be the gsame as Figure 7
A'g) as afterward, the ,
reflection mist occur as shown in Minkowski's Absolute Space-Time (1907)

Figure 7. This procedure defines
a tilted space axis, which is B's
locus of events which are
simultaneous with respect to his
origin event. So, B's time axis
is tilted with respect to A's
time axis, and his gpace axis is
tilted with respect to A's space

"Sliced up" in
different ways
by inertial
observers

axis. This is the famous
Minkowski diagram. Hermann
Minkowski was one of Einstein's
teachers at the technical

university in Zurich, who was
very negatively impressed with
Fingtein as a student, but later
came to recognize his great
accomplishments. It was Minkowski who
contributed the space-time geometry to the
physics of relativity that Einstein had
develonped.

We've had observers A and B, now
suppogse we have C. If C is moving to the
left then his axis of simultaneity is
tilted down, as shown in Figure 8. The
several observers will register different
relative timegs for two events, Consider
the events, labelled 1 and 2 in Figure 9,
Then it's clear that A would regard these
as occurring at the same time since they're
on his axis of simultaneity. But for B, he
has to project over parallel to his axis of
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gimultaneity and it is clear that Event 2 occurs before Event 1,
according to B's time. C must project parallel to his axis of
simaltaneity and he will conclude that Event 1 occurs before Event 2.
So they don't agree on which occurs first. They also don't agree on the
magnitude of the time interval between two events. They won't agree
either on the distance interval between two events. But Minkowski
showed that they do agree on something! What they agree on is the so-
called invariant interval, As, which is given by:

2 - 2un? - ax? (A)

(4s)

Zen? - axn? (m)

It

Caem? - axm?

i

where unprimed, primed, and double-primed refer to A, B, and C
respectively. They all get the same value when they make this
combination of time and space intervals. The quantity As is invariant
with respect to a change of inertial observers with their respective
time and space coordinates. It's a very important result. It forms the
basis for Einstein's whole development of gravity as curved space~time,

Einstein was often tempted to change the name of the theory of
relativity to the theory of invariance because it wasn't so mach, in his
view, the way different observers see things in relative fashion, but
what is unchanged for the various observers. But that suggested change
of name never caught on. It is not hard to demonstrate the invariance
of the interval. Because of limited time, I'm not going to do it. It
can be done in only a few algebraic steps using the k-calculus and
gpace-time diagrams (See Ref. 1). You don't have to introduce Lorentz
transformations, and other complications to prove it.

Here's how Minkowski described his result in a talk in 1908:

"The views of space and time which I wish to lay
before you have sprung from the soil of
experimental physics and therein 1lies  their
strength. Henceforth, space by itself and time by
itself are doomed to fade away into mere shadows
and only a kind of union of the two will preserve
an independent reality.”

He's talking about his slicing up of space-time with the tilted axes in
Figure 8. I think of the axes tilting for different obgervers like the
blades of a pair of scissors pivoted at the origin.

Now we have all we need in order to deduce the effect of motion on

c¢locks. Consider Figure 10, which shows the worldline of a moving clock
with the events corresponding to a couple of ticks on the clock in the
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space-time diagram for some

inertial obsgerver. Between the

two ticks, the inertial observer

will say there's a certain +
interval of time, At, which we
will call +the coordinate time
interval. The moving observer,
of course, will record the
interval between his own ticks
and we will call that the

at{l

The Effect of Motion on Clocks

~World Line of
moving clock

{At, Ax)
(Ar,0)

1

j
interval of proper time, At . s
For the coordinate observer
there's also a space interval
between these two ticks: the
clock moving. But for the

is

Figure 10

Reading of moving
clock is its own time,
Praper Time.
Dencte by T

clock itself there is no spacial difference hecause the clock is always

at the origin of its own instantaneous coordinates.
we can deduce the difference between it and

this notion of proper time,

So,

in terms of

coordinate time by appealing to the invariance of the interval.

2

ps? = 2ne)? - )l =

where the prime now refers to the moving clock.

Zieny? -

(hx')?

But we've agreed to

identify At' with AT, the proper time interval, and we've agreed
that Ax'= 0, so if we gsubstitute that into the eguation, and further
note that Ax = v At where v is the instantaneous velocity, we have
(As)2 = cz(At')2 - (Ax')2 = (czAt)2 - (Ax)2 = cz(At)2 - (vAt)2
= -Vt ety e’
AT = {'_1 - v2 /c2]1/2 At
proper coordinate
time time
interval interval
Thigs famous equation, of course, is one of
the basic equations that we will be dealing
with. 1f we consider two clocks, A and B, ‘
which are moving along different paths in A
space—-time, as shown in Figure 11, the ©)
elapsed proper time for each will Dbe . _
different. "Your time is not my time." If " Your fime is
we synchronize the c¢locks when thay are not my fime*
together and they then go on different paths
and rejoin, one must evaluate an integral to
get the elapsed proper time for each clock
with respect to the coordinate time for some Figure 11

inertial observer.
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. 2, 2 %
TA(flnal) TA(lnltlal) f(1 TV /¢ ) dt

H

1
T,(final) - 1 _(initial) [a1 - VB2/ c? ) 2 ae

and since vA2 will be different from VB2 over the paths, these are not
equal. There's a route dependence for proper time.

Einstein recognized these implications for

c¢locks in 1905, and he actually made a prediction O
and suggested an experiment. He said that a clock
(excluding one whose rate depends on the local value [/ ~-----.
of the apparent acceleration of gravity, 1like a
pendulum clock) at the Equator will run slow with
respect to a similar clock at the Pole, because of
the surface velocity produced by the earth's
rotation, as shown in Figure 12. If you put in the
value 0.46 kilometer per second for the equatorial
surface velocity, you get 102 nanoseconds per day, Figure 12
according to the time dilation equation for the

difference in rate between an equatorial c¢lock and a polar clock. If

~0.46 km/s

one could have done that experiment in 1905 -- if sufficiently stable
c¢locks had existed then —— a different result would have been obtained
than he predicted: a null result! Hig 1905 prediction ignores the

effect of gravity. It was to be two years before he discovered the
effect of gravity on time as a consequence of his famous Principle of
Equivalence. I will come back to this question and describe an
experiment we've done recently transporting clocks from Washington, D.C.
to Thule, Greenland and back.

I'd like to quote from the Presidential Address at the BAmerican
Association for the Advancement of Science in 1911 by Professor W. F.
Magie of Princeton University.

"I do not believe that there is any man now living,
who can assert, with truth, that he can conceive of
time, which is a function of velocity.”

That was six years after Einstein's paper of 1905 by which time most of
the leading physicists had accepted his ideas. But to this day, there
are people who do not believe that clocks behave in this fashion.

INCLUSION OF GRAVITY: THE PRINCIPLE OF EQUIVALENCE

Let me now turn to gravity. How does gravity get into the
relativity picture? Thig is an excerpt from an essay that Einstein
wrote in 1919 that was published in the New York Times when his papers
began to be edited in 1972 (he was recalling what he was doing in 1907);
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"At that point there came to me the happiest
thought of my life in the following form: Just as
in the case where an electric field is induced by
electromagnetic induction, the gravitational field
similarly has only a relative existence. Thus, for
an observer in free fall from the roof of a house,
there exists, during his fall, no gravitational
field, at least not in his immediate wvacinity. T1Ff
the obgerver releases any objects, they will remain
relative to him in a state of rest or in a state of
uniform motion independent of their particular

chemical and physical nature. The observer 1is
therefore justified in congidering his state as one
of rest.”

This is Einstein's own statement of the Principle of Equivalence between
an accelerated system and a system in a gravitational field.

There 1s a story, probably apocryphal, that while Einstein was at
the Patent Office in Bern, a workman fell off of the roof of a house and
reported that his tools fell along with him. They all landed in bushes,
and so he survived to tell the tale, thereby influencing Einstein. But
I think that's really not true.

In a system falling freely Free Fall
under the influence of gravity, ) l
there is no local gravitational (jjﬁ?\ No L ocal
field. 0f course, we're very gx&?”mm

familiar with this now, from the
gspace flights of +the Apollo

Program, the skylab, Space
Shuttle and the Soviet Sovuz
spacecraft, and so on. Objects

that are put out in front of an
astronaut will stay there, as
shown in the upper left part of
Figure 13. I'm told that on the
skylab, some of the astronauts
made a basketball-size drop of
water, which would just stay there, held together by gurface tension
{and of course oscillating just a bit). Consider now, in a region where
gravity 1s not present, an accelerated lab, an "Aclab", which is pushed
by a rocket engine. Ten, if vyou release objects of whatever
composition they would seem to approach the floor in the same way,
equivalent to what you would see in a gravitational lab, "Gravlab", in
the presence of a gravitational field, for example, on the surface of
the earth. There have been many experiments showing that all objects,
whatever their composition, fall (in a vacuum) with the same

thenet “araviab”

Figure 13
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acceleration. In technical language, one says that the inertial mass is
the gsame as the gravitational mass. In recent years, this has been
shown by R. H, Dicke and by V. Braginsky to be valid to parts in
10 to 10'". Lunar laser ranging has shown this also to be true for
the earth and moon falling to the sun, with the same precision .
Einstein's idea was not to stick with the mechanical properties only but
to ask what are the consequences of the Principle of Equivalence for
other parts of vhysics, in
particular for electromagnetic

chefronTS\

phenomena, which includes ’ e
light., Suppose you had light a] Hf/%/7z/7( <___> glfo/,c/,/%/
sent across this "Aclab", as 7
shown in Figure 14. ‘'hink of it ' I
as rows of marching soldiers (1

corresponding to the " "

wavefronts. The lab is clab Graviab

accelerated, so it would appear
inside it as though the 1light
beam were being bent. If the
equivalence idea is true then in
a gravitational field, vyou would see this bending of light, and the
marching soldier analogy tells you that the soldiers at the top would
have to move faster than those at the bottom in order to make the
curve. So you predict that 1light paths should be bent by a
gravitational field, and that the speed of 1light increases with the
height. There's no mathematics in thisg deduction at all, just physical
ideas.

Figure 14

There's a little mathematics needed to dJdeduce the properties of
clocks in a gravitational field. Suppose you have this "Aclab"™ with a
low clock on the floor and a high clock on the ceiling and you are
exchanging laser pulses between them, as displayed in Figure 15. We can
calculate what would happen in this situation, and I'll do it in just a
moment . If the "Gravlab" is equivalent to the "Aclab™, then what we

4 P. G. Roll, R. Krotkov, and R. H. Dicke, "The Equivalence of Inertial

and Passive Gravitational Mass," Ann., Phys. (U.S.A.), Vol. 26, pp. 442
=517 (1964) .
> V. B Braginsky and V.I. Panov, "Verification of the Equivalence of
Tnertial and Gravitational Mass", Zh. Eksp. & Teor. Fiz, Vol. 61, pp.
873 - 879 (1971). English translation in Sov. Physics - JETP Lett.,
Vol. 10, pp 80 - 283 (1972).

J. G. Williams, R. H, Dicke, P. L. Bender, C., O. Alley, W. E. Carter,
D. G. Currie, D, H. Eckhardt, J. E. Faller, W. M. Kaula, J. D.
Mullholland, H. H. Plotkin, 8. K. Poultney, P. J. Shelus, E. C.
Silverberqg, W. 8. Sinclair, M. A, Slade, and D, T. Wilkinson, "A New
Test of the Eguivalence Principle from Lunar Laser Ranging", Physical
Review Letters, Vol, 36, pp 551 - 554, (1976).
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calculate in the "Aclab" should G High
apply for the "Gravlab", and we vor

will see that the high clocks are oy
predicted to run fast with @ JLow
respect to the low clocks. One o

can deduce this result easily by

using the ideas of the k-calculus "Aclah' "Craviah”

which we introduced earlier.
Figure 15

It 1is mnot +true that vyou
cannot consider accelerated
motions in special relativity.
Let us consider them. The left
of Figure 16 shows the curved
worldlines plotted in an inertial
system Minkowski diagram of the
low and high clocks of Figure 15
in the "Aclab". L.et us send
light pulses from the low clock L )
to the high c¢lock, as shown on i X : %
the right of Figqure 16, There
will be a stretching factor ®T Figure 16
just as we have discussed
earlierx, because there is some velocity of the high clock at the time of
reception. Even though the high clock started off with zero velocity
with respect to the inertial system, the acceleration produces some

Comparison of Clocks in "Aciab”

+? Low  High fT Low High
/

velocity according to v = at. If we substitute for v in the equation,
and make a few manipulations, we find for k
1 1
k = {1 +v/c) / (1 - w/c)] Z. [(1 + at/c) / (1 - at/c))‘/2

1
e (1 + 2at/c) 2

But t = h/c where h is the separation of the c¢locks. Therefore,

1
k = {1+ 2ah/02 ) Z

But by the Principle of Eguivalence, the acceleration of gravity g is
equivalent to a, so we gubstitute g for a and get

1
2
k = ( 1+ 2gh/c ) 72
Then we rememher that ’ according to Wewtonian physics, the
gravitational potential difference ¢ 1is gh, so we have
1
2
Xk = ( 1+ 2b/c ) 72
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In the "Gravlab", as shown in Figure 17, the

worldlines of the low and the high clocks will be Low  High
straight, since they are not moving. However, if t
we send light pulses from the low clock to the "Graviab"

high clock, we would still get a stretching
factor given by the above equation because of the
Principle of Eguivalence. This straightened P
space-time diagram exhibits the curvature of TVV
gpace~time, in this case, the curvature of time,
that is at the heart of Einstein's theory of
gravity, General Relativity. ILet's look a little
more at that. Figure 17

kT

To compare a low clock with a high clock in
a gravitational field, we can use the game
Einstein prescription we discugsed earlier: gend
out a light pulse, get it reflected back, and
identify the mid-point between sending and N
receiving with the time of reflection, as shown S
in Figure 18. ‘'hese two events are simultaneous o
for the low observer. A little bit later, the AT{* < }AT
low obgserver could do the same thing and identify
the mid-point time with the reflection time as d
being simultaneous. But what we've just seen is X
that the elapsed time for the high clock, At,is
going to be different from the elapsed time for
the low clock, At, defined this way: AT # At .

) ) . . Figure 18
Now, how to incorporate this gravitational

effect into the metric¢ structure that Minkowski had proposed, the
invar%ant iQtervgl? Einstein's idea was to retain the identification of

(As) = c¢ {(AT) , AT being the proper time interval, and to insert a
metric coefficient in the invariant interval expression in order to make
things come out the way we have Just calculated for a static
situation. 80 here is the presence of a metric coefficient in this
invariant interval which is a manifestation of time curvature.

(hs)2 = (1 + 20/¢%) SCun? - wo? = PFon?

metric
coefficient

For the stationary high c¢lock, we have then that
1
At = (1+2¢/c2)/?-At
We can get the speed of light by not%?g that for light pulses, the two

events lying along a light line, (As) 1is going to be 0, so if you put
this equal to 0, we can solve for Ax/At, the coordinate speed of light,
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and we get

Ax
At

t@ .

(1 + 2¢/c2)

This shows that the higher yvou go, the faster the light mast move, as we
had concluded already. We can now ask what happens to a moving clock.
Let's bring in three dimensions, and include Ax, Ay and Az in the

metric,
he)2 = c2(an)% = (1 + 20762 c2uan)? - (a0l - By ? - (az)2

2 2 .
The sum of the sguares of these is Just v (At) . Making that
substitution, and carrying out a few lines of algebra,

Zian? = (1« 20760 an? - vPae)?
(aT)2 = (1 + 20/¢% - v2/c%) (am)?

we get that in this gravitational case the relationship between the
proper time interval and the coordinate time interval is given by
1
At = (1 + 20/ - ¥P e 2 pt
proper coordinate
time time
interval interval

2 2,2
We can expand this when ¢/c and v /c are small, which is certainly
the case on the surface of the earth, and we get

At = (1 + ¢/02 - v2/ 2c2) At

One can synchronize c¢locks to the coordinate time (which we are
taking as the time kept by clocks on the surface of the earth) by using
the laser pulse technique illustrated in Figure 18. The light line is
drawn slightly curved in Figure 18 to illustrate the speed of light
changing with altitude. To make the high clock run at the same rate as
the low clock, one must physically adjust it (See the later discussion
on the GPS).

Te above eguation is the basic one needed
in order to understand these effects of General
Relativity on proper time. I'4 like to give an
analogy to the curved surface of the earth in .
Figure 19. Here we have a coordinate increment T As =07 km
of longitude, call it A, with Ao being one
degree. You know that at the equator the actual
proper distance on the earth is about 112
kilometers, whereas, if we go to a latitude of 45° and consider the same
longitude interval, it's only about 79 kilometers. There is a proper

Figure 19
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distance interval As which is related to the coordinate distance
interval Aa by the following eguation

Az = R cos 8 Aa

Proper Coordinate
Distance Distance
Interval Interval

and there is a coefficient, called the metric coefficient, R cos B,
where f# is the latitude and R is the radiug of the earth. This is an

excellent analogy to the situation in curved space-time. There, we
have, when the clock is not moving

()2 = 2at = (1 + 20/¢%) ey =

or

where 990 is the, name given by relativists to the metric
coefficient (1 + 24/c ) . The proper time interval AT is related to
the coordinate time interval At in this way for stationary clocks:

At =

One can often establish on two—-dimensional
curved surfaces a metric formula. In the case
of the sphere when we consider both latitude and
longitude we get

2 cos® B(ha)? + RE(AB)Z

2
{(As)” = R
For a different choice of coordinates on a two-
dimensional surface, as shown in Figure 20,
there can be cross—-product terms

2 2
(As)™ = g11(Ax1) + q12Ax1 sz

5 Figure 20
+ g21 sz Ax1 + g22 (sz)

The great mathematician Gauss and his successors Riemann and Levi-Civita
and many other differential geometers, have extended this to any number
of dimensions and have written the proper interval of distance as a
quadratic form with metric coefficients, which are always called g now,
because of their application to gravity by Einstein in his curved space-
time.




2 2
(As)™ = g11(Ax1) + g12Ax1Ax2+ aes

e
szAx + q22(Ax2)

921 1

+ e
938%50%,

-
.

IInfortunately, we cannot go into the mathematics of differential
geometry for lack of time. It is highly interesting and enlightening
and very powerful for calculations, but in many ways it has obsgcured the
physics of General Relativity.

Einstein got these ideas about including metric coefficients in the
expression for (As)  to describe gravity around about 1911/1912. During
the years 1912-1214, he worked with his long-time friend, the
mathematician Marcel Grossmann, %to develop the General Theory of
Relativity. They wanted to allow curvature of space as well as
curvature of time, and they proposed field equations to describe how
matter will curve space and time. That is, how the metric coefficients
will be determined by the distribution of matter. Matter curves space-
time. ©Einstein proposed that objects would move in this curved space-

time along geodesics: the shortest path or the extremal path. A
geodesic between two points on the gurface of the earth is the shortest
path -- the arc of a great circle. In the case of curved space-time, if

you imagine a clock attached to a particle which is moving, the motion
will be such that the elapsed proper time will be a maximum. Bertrand
Russell wittily called this the "Principle of Cosmic Laziness".

There is the prescription: — clow
"Curved space-time tells objects
how to move; matter tells space- (D CD (9 (9 CD G)
time how to curve." ‘This is the Sw’CJ
way Professor John Wheeler likes r
to summarize General Rela-
tivity. Tere is no more G
Newtonian force. Objects move re
under the influence of gravity
because of the way clocks L
behave, A clock will run faster )/
the higher it is, and it will run
slower the faster it moves. The
primary curvature for slow speeds Figure 21
and weak gravitational fields 1is +the curvature of time, not the
curvature of space, as yvou read in so many of the popular books. How
can you represent this curvature of time? We can do it in terms of the
diagram in Figure 21. Imagine the sun on the left, and plot the
gravitational potential ¢ of the su as a function of the distance r
from its center (or, better, plot ¢/c¢° since this combination occurs in
the relation between proper time and coordinate time).

fast ——

=<

aS)

é}} Earth
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-GM R
¢ e (-2)
2
[ R ¢ r
[
where G = Newtonian Gravitational Constant
* = Mass of the Sun
Ro = Radius of the sun

This plot is often called
the "potential well" of the
sun. Its _gdepth" is

GM /R.c # 2 x 107 . The wmuch
smaller potential well of the
earth is shown superimposed (in
exaggerated form) on the curve

for the _sun., Its_1§epth isg
GM /R = 7 x 10 (Mo =
mass of the earth; R, = radius of

the earth). With respect to a
clock at a great distance (at the
"top" of the potential well), a
clock will run slower as it is
placed deeper in the potential
well.

To dramatize this effect,
consider Figure 22 which is a
drawing made by Herblock, the

great cartoonist of the
Washington Post, at the time of Figure 22
Einstein's death in 1955,

Imagine that an observer at a
great distance from the sun is

obgerving events on earth. One ~
hundred years on earth (for y
example, the time betweaen
Einstein's birth and his -

centennial celebration on March

14, 1979) would appear to this

observer as 100 vyears plus 41

seconds: 29 seconds from the (ofter Misner, Thorne,
ascent from the earth up the ond. Wheeler )
potential well of the sun; two

seconds from the potential well

of the e%fthﬁ and 15 seconds from Figure 23

the -v f2c effect of the

earth's velocity around the sun.
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Wheeler likes to demonstrate the motion along geodesics in space-
time by considering ants on an apple. Figure 23 is a sketch from the
cover of the great book, Gravitation, by Misner, Thorne and Wheeler,
Suppose vyou imagine ants that try to move as straight as they can
locally (this is one way to define a geodesic). Since the surface of
the apple is ocurved, they tend to move in curved paths, and this is
analogous to the motion of objects in curved space-time. Locally, they
try to go as straight as possible and they end up going in curves, which
manifests itself in an acceleration, the acceleration of gravity. So
his Principle of Equivalence gave the clue to REinstein: gravity is to be
described by the metric coefficients in curved space-time, including not
only the 900 coefficient, but all the other coefficients that could come
in from the different products of At, Ax, Ay, and Az, .

2 2 2
— + +
(Ag) 990° (At) 9y4€ AtzAx + 992 ° At Ay 954C At A=z
+ A + + +
g10c t Ay g11(Ax) = Ax Ay 944 Ax Az
+ + + +
DTN At Ay 9, Ay Ax g22(Ay) 953 Ay Az
+ I30¢ At Az + q31Az Ax + g32Az Ay + g33(Az)
A certain symmetry is imposed
910 T %1 " %20 7 2 7 F30 T Y3 7

T 939

92 T 91 7 943 931 7 93

so that you end up with only ten metric coefficients which can be
arrayed in this fashion.

%o %1 %2 %3

90 911 T2 T3

g =
HY Y0 %1 %2 23
930 931 932 33
This is the famous metric tensgor; these are functions of space and

time in general. Einstein wanted to alfow any coordinates, not just
inertial coordinates (inertial observers), but for an inertial observer
(realizable 1locally by a freely falling laboratory), this array of
metric coefficients reduces to a simple form

1 0 0 0

0 =-1 0 0

v T 0 0 -1 0
o 0 0 -1 .

This represents the Minkowski metric that we have seen earlier:

(hs)? = c2(a)? - x)? - (ay)? - (an)?




When you make a change of coordinates, the metyic coefficients are going
to have to change also in order to keep As invariant. The metric
coefficients play the role of generalized gravitational potentials. I
wish there were more time to elaborate on these things.

SUMMARY OF GENERAI, RELATIVITY

Einstein wrote +the quadratic form that implies summation on
repeated indices: 4 and VvV run from 0 to 3,

2
= A »
(As) guv Axu X,
invariant metric
interval coefficients
The coefficients g are to be obtained by solving the famous field

equations which are]g%own here in symbolic form.

87 G
Ru\) - Rgu\) - 4 v
Contracted Curvature ¢ Stress
Riemann Scalar Energy
Curvature Tensoyr
Tensor

These are ten second order partial differential equations. They are
non-linear in that they involve products of the first derivatives of the
metric coefficients. The source term on the right~hand side T , is
the general stress energy tensor of matter; it includes the effgcts of
matter, energy, and pressure, all of which produce gravitational
fields. On the left-hand side are wvarious curvatures from differential
geometry involving first and second order partial derivatives with
respect to time and space of the metric coefficients g v RU is the
contracted Riemann Curvature Tensor and R is the Curvature Scafar. In
1917, Karl Schwarzschild solved these eguations and got the famous
Schwarzschild metric, which I display here.

ms)? = (1 -2 Fan? (1} 5 - 1% cos*B(ba)? - 2% (4B)°
i rc {1 - 2GM/rc )

2 2

c (A1) Curvature Curvature

for moving of of

objects Time Space

This is the metric that is to exist outside of ay iso}ated spherical
body of mass M. The coefficient 990 of the ¢ (At) term involves
-GM/x, which is the Newtonian potential ¢ . It describes the curvature
of time as we have seen earlier2 There's also a similar expression in
the denominator of the (Ax) term, when one uses spherical
coordinates as here. ‘This describes the curvature of space. But, for
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ordinary motion (that is, in weak gravitational fields, like on the
earth, and for velocities much less than the speed of light), vyou can
neglect the curvature of sgpace. ALl of Newtonian physics follows from
the curvature of time alone.

It is the Schwarzschild metric

_——

that leads to the famous concept of pad N re
the black hole. This is a phrase / \
coined by John Wheeler, Suppose you /
ask, can, the coafficient of | '
2 \ /
the ¢ (At) term, the Y50 //\ / o
coefficient, go to 0?7 Well, it can: N y Af” mass inside
/ ~ e or g
Fvent _--
g = 1 - 2aM 0 Horizeon
00
rc
2GM
for r = —2
c Figure 24

One c¢alls this wvalue of r the Schwarzschild Radius and often denotes it
by Ty You can calculate its value for various masses. In the case of
the earth, it's about nine millimeters. TIn the cage of the sun, it's
three %ilometers. Now suppose you could compress all of the mass of the
sun into a sphere with a radius of less than three kilometers? Then
you would have a verv singular surface outside the mass, which is shown
as a dashed line in Figure 24, The surface, often called the event
horizon, has remarkable properties, because the coefficient 990 vanishes
there. If you imagine watching a clock moving in towards the event
horizon from a great distance, its time and motion would slow down and
vou would never see it get there. For this reason, the Russiang call an
object of this sort a frozen star, Jjust because of the property that
matter would fall in and seem to never get beyond the event horizon.
You cannot get any information out from inside this event horizon.
Howeveyr, 1if you are riding in with some of the falling matter, and
recording things in vour proper time, it takes a finite proper time to

get in and through the event horizon. If there is a supernova explosion
and subsequent collapse of the central material to form a bhlack hole,
this can happen in a few milliseconds. Such collapses are, perhaps,

potent sources of gravity waves, about which we will hear in the next
talk.

I want to correct a widespread misconception about black holes:
that they are all very, very dense. This isg certainly the case for the
examples of black holes with a solar mass or an earth mass as discussed
above. Note; however, that the Schwarzschild radius T is proportional
to the mass M, and that the density varies as M/rqB. Therefore, the
density depends on mass as 1/M”. For a black hole with very large mass,
the density can be very small. Figure 25 shows the galaxy MB7 in the
Virgo cluster. This is a weak exposure so that you can see this bright
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jet coming out of the center uncobscured by
outer parts of the galaxy. There is some
evidence, for example the high velocities
of stars near the center of this galaxy,
that suggests that there is a black hole of
several billions of solar masses present
there. The jet is probably associated with
the rotation of that black hole; matter
being converted into energy as it falls
into the black hole, and somehow propelling
the jet along the axes of rotation. There
are many Jjets of this sort in galaxies.
There may be a black hole in the center of
our own galaxy. There's some evidence for
it, but no time to discuss it here.

Figure 25

EXPERIMENTAL MEASUREMENTS OF RELATIVISTIC CLOCK EFFECTS

Let me now talk some about experiments very quickly. We have done
experiments with aircraft and lasers to illustrate, measure and
demonstrate these effects. My chief collaborator was Len Cutler who was
the designer of the Hewlett-Packard 5061 Cesium atomic beam standards
which we used. Bob Reisse’ and Ralph williams8 did their theses as part
of these experiments. There were many other participants at the
University of Maryland and the Naval Observatory. Dr. Gernot Winkler,
Director of the Time Services Division, very kindly lent the clocks and
gave much, much support to these activities.

We were able to fly clocks in an airplane, suitably packaged so

that they didn't suffer from environmental degradation of their
performance. Figure 26 shows a schematic diagram of the flights.
We could send light pulses up and get them reflected back from a lunar-
type corner reflector on the plane, also registering the time of their
arrival with the airplane clocks in just the way Einstein prescribed We
tracked the air craft with radar beams in order to have an independent
knowledge of the position and velocity from which to calculate the
proper time differences. We used minicomputers and event timers both on
the ground and on the plane. There's no time to go into details; these
have been discusgsged in other places . The plane would fly for about 15
hours over the Chesapeake Bay from the Patuxent Naval Air Test Center in
a racetrack pattern, taking about 20 minutes to go around a path shown

7 R. A. Reisse, "The Effects of Gravitational Potential on Atomic

Clocks as Obsgerved with a Laser Pulse Time Transfer System," University
of Maryland Ph.D. dissertation (May, 1976).

R, E. Williams, "A Direct Measurement of the Relativistic Effects of
Gravitational Potential on the Rates of Atomic Clocks Flown in an
Aircraft,"” University of Maryland Ph,D, dissertation (May, 1976).
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during one of these flights, a
These measurements

integral. The time

in Figqure 27. We would accumulate,
typical time difference of about 50 nanoseconds.

were in good agreement with the proper time
difference between the airborne and ground clocks would be given by

integrals of this sort.

o= [T

+_—
a JO(‘I
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Figure 26
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We a110wed for higher terms in -PATUXENT NAVAL AIR TESY CENTER
the earth's gravitational '
potential due to its oblate
shape, and for the rotational
effects of the earth. We
evaluated the proper time
integral in a reference frame
centered on the earth which is
non-rotating with respect to
distant matter, as shown in
Figure 28,

The clocks were modified in
order to give the performance POTOMAG .
needed. Following suggestions by FIVER -~
Len Cutler and others at Hewlett- <
Packard, we increased +the beam
current by a factor of 2, we —

: . : ® - THEODOLITE STATION |__
added an integrating loop in the
crystal control, and there was a
proprietary modification of the
beam tube (now standard on all Figure 27
high performance tubes). All in
all, we could achieve stabilities
over the 15 hours at a couple of r V =wr cos @
parts in 1014 with standard w >
commercial c¢locks, as shown in
Figure 29, We  paid much
attention to providing a stable
environment for the clocks. Let
us look at some pictures to show
you the equipment and give vyou
some feeling for the experiment.

non-rotating

Figqure 30 is the plane which
we used. Figure 31 shows it on
the ground; the clocks were in
the trailer, and the laser Figure 28
equipment was in the bus. Fiqure
32 is the detector on the plane
behind one of the observation windows. Figqure 33 shows the corner
reflector outside the observation window. Fiqure 34 is the beam
directing optics. Figure 35 shows the laser, below which is the 7.5
inch telescope which receives the reflected laser pulses. Both the
detector and a closed circuit TV camera for guiding are coupled to it
with a beam splitter. Figure 36 shows TLen Cutler adjusting some of the
six Cesium beam clocks. Figure 37 is the clock box that protected them
from environmental changes. It contained magnetic shields, vibration
isolators with near critical damping at a resonant frequency of several

710




Figure 30

JR———

Figure 32 Figure 33

Figure 34 Figure 35
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Figure 40 Figure 41
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Hertz, and consgtant pressure and Nimber of points of sample

constant temperature controls. 457 26 08 51 2g i 5

Air was circulated through the L‘”/'M”{(e, 4 2% 8% 6% A%
boxes to get the heat out and fo s- . T TmTmm o
keep the temperature constant, as Lo Far pure white frequency noise a
shown in Figure 38.  Figqure 39 Lo oy i
shows the 1id which supported o T e

voltage and pressure
regulators. Figure 40 shows the
clock bhox mounted in the P3C
airplane. Figure 41 is the
electronic equipment to measure
and record the relative
performance of c¢locks on board
and to record the epoch of the
arrival of the laser pulse. Oon
the right of Figure 41 1is a
travelling clock, whose
environment was not controlled.

—

The kinds of data that one 3

could get are shown in Figgre 42 5‘)_ System res.mu‘rlon\\\ N
for a flight on November 22, Ly

[P | L. N i t
2040 4080 B8I60 6320 32640 65280 130560
Seconds

1975. We flew for five hours at
25,000 feet, and for another five
hours at 30,000 feet to burn off
fuel, «concluding with another Figure 29

five hours at 35,000 feet. So

there were steps in the potential

difference. The vertical scale is parts in 1012. There were changes of
velocity due to wind as the aircraft circled, shown in the lower part of
Figure 42 (the v2/c2 effect). The integral of these curves is shown in
Figure 43. The potential effect integrates out to about 53 nanoseconds,
the velocity effect to about -6 nanoseconds, with the net effect being
about 47 nanoseconds. The error bhar points are the laser pulse time
comparisons. The actual data before flight and after flight can be seen
in Figure 44 with the direct side~by-side clock comparison represented
by the solid 1line, the laser comparison shown again by error bar
points. The agreement between the prediction and the measurements is
gquite good. The relative rate of the airborne and ground clocks
ensembles is represented by the slope and is seen to be the same both
before and after flight. There was a similar effect for each of the
individual clocks. Figqure 45 illustrates the effects of the steps in
altitude. They produced changes in relative clock rates which were
measured by the laser pulse time comparison. The technigue can serve as
a crude altimeter! Figqure 46 shows the time of an on-board clock with
regpect to the average of all on-board clocks. You can't even tell
where the flight occurred! If that same clock is compared with the
ground ensemble as shown in Figure 47, there is a step of some 47
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Figure 42
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nanoseconds or so, as expected. Five

separate 15-hour flights of this type were ¢pme
carried out, each yielding similar results.

We have done other aircraft clock Peq
experiments on a global scale. You will '
recall Einstein's "error" that we referred
to earlier, the equator to the pole clock ¢pme<¢m
comparison. The surface velocity, 1if we

consider only that, gives a prediction of

102 nanoseconds a day for the relative

clock rates. But this is wrong, because Figure 48

you must also congider the gravitational

potential difference. In going from the equator to the pole on an
oblate earth there is a change in potential, as shown in Figure 48. The
earth is an oblate %pheroid and the mean ocean surface 1is an
equipotential of ¢ - v /2, the so-called geopotential. You remember
that's exactly what comes into the relation between proper time and
coordinate time:

2

ar = [1+ (5 -5 )] at
2 2

——

a

¢ - v2/2 is constant along the mean ocean surface on the oblate
earth. So the proper time is going to be constant along the mean ocean
surface. 'Thus, one would expect a time difference to be produced only
by flight conditions, the altitude above the ocean surface and the
velocity contributing to the proper time integral, as we Thave
discussed. We flew clocks to Thule, Greenland, left them four days, and
brought them back. We measured a time difference of 38 4 5 nanoseconds,
and we calculated 35 + 2 nanoseconds from inertial navigation and air to
ground data. There is no anomalous latitude effect. The "Einstein
error", 1if that prediction were calculated for Washington to Thule,
would have been 224 nanoseconds over four days from a predicted rate of
56ns/day . The experiment provides another demonstration, from this
point of view, of the effect of the gravitational potential difference
which just compensates the velocity effect.

We have also done
. . . , 235 at time of summer solstice
experiments with Einstein's ™ 0
freely falling laboratory in N
which we've used the earth itself ";31_ C T T obital Plare
as the falling laboratory. e  ~foth!  Free Fol

earth 1is always falling freely
towards the sun, but it moves in
orbit around the sun and never
falls in. Tts spin axis is Figure 49
tilted 23.5 degrees with respect




to the plane of its orbit, so that at the time of the summer solstice,
clocks in the Northern Hemisphere are closer to the sun than clocks in
the Southern Hemisphere, as shown, with an exaggerated tilt, in Figure
49. There's been a long-standing puzzle, or confusion, on the part of
some people: on the earth, should the high clocks in the sun's potential
run fast with respect to the low clocks in the sun's potential?9’10'11
The answex is no, by the
Principle of Equivalence. You
will remember that gravity is Q —
cancelled locally in a freely —

falling laboratory. We actually -
did the experiment by flying
clocks from Washington to
Christchurch, New Zealand and 23.5

back again. The disagreement and C/ /.;“.>‘\/

the confusion in the literature,
raesults from people wanting to

X , ) Sun Earth
retain the linear term in the
expansion of the potential about
the centexr of the earth, as .
sketched in Figure 50. There is F].gu1r2e >0

an excellent paper by J.B. Thomas from JPL “, which does this
calculation correctly. There are remaining second order terms in the
expresgsion of the potential which cause tidal effects, but these can be
neglected in their effects on currently available c¢locks. In our
experiments we found agreement between the calculated proper time
difference and the measured proper time difference. The results are
shown in the following Table.

9 B. Hoffmann, "Noon-Midnight Red Shift," Physical Review, Vol. 121 ,
;%g 337ff (1961).

R, U. 8exl, "Seasonal Differences Between Clock Rates,” Physics
Letters, Vol. 61B, pp 65ff (1976).

W. H. Cannon and 0. G. Jensen, "Terrestial Timekeeping and General
Relativity: A New Discovery," Science, Vol. 188, pp 317£f (1975). ‘The
errors in this paper have been pointed out in many letters in
"Acceleration and Clocks," Science, Vol. 191, pp 489-491 (1976). The
authors have retracted their claims.

J. B. Thomas, "Reformulation of the Relativistic Conversion Between
Coordinate Time and Atomic Time," Astronomical Journal, Vol. 80, No. 5,
pp 405ff (1975).

716




FLIGHT 1 FLIGHT 2

(10 — 17 (23 - 30
July 1977) July 1977)
- 115 10 131 10

(TA TG) measured (ns) * *
- 129 2 122 2

(TA TB) calculated (ns) t *
(Measured - Calculated) (ns) -14 + 12 11 ¢+ 12

Calculated Effect

of Linear Term (ns) 80 % 2 70 + 2

Note that there is no evidence for the alleged effect of the linear
term.

These flights also point up the effect on proper time of clock
transport by aircraft. The following table displays the calculated
proper times using data from the on-board inertial navigation units and
plane-to-ground radar for the different legs of the trips.

EFFECT OF EARTH'S ROTATION

FLIGHT 1 (ns) FLIGHT 2 (ns)
Andrews AFB to Travis AFB (E - W) 35 31
Travis AFB to Hickam AFB (B - W) 35 31
Hickam A¥B to Christchurch (E -~ W) 47 52
Christchurch to Hickam AFB (W - E) 16 16
Hickam AFB to andrews AFB (W - E) -1 -4
Dwell Time on Ground -3 ~3

Note the large difference between East-West and West-~East legs caused hy
the earth's rotation: In the West-East direction the surface velocity
of the earth adds to the surface velocity of the aircraft, giving a
large velocity in the inertial frame attached to the center of the earth
where the calculations are best made. The large v~ /2c¢” very nearly
cancels the ¢/¢ in the proper time integral. The entries in the table
are typical of the effects to be expected for an air speed of 500 knots
and an altitude of 35,000 feet, characteristic of Jet aircraft.

Let me show you a few pictures of our global flights. Figure 51 isg
a polar view of a National Geographic globe on which is marked the path
of the flight from Washington to Thule and back. You can see there is a
large change in distance from the earth's spin axis, producing a large
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Figure 51 Figure 52

change in surface velocity. PFigure 52 shows the tilted earth, the sun
being off to the right at the time of the summer solstice. The path
from Andrews AFB in Washington to the Travis AFB in California to Hickam
Field in Hawaii, and down to Christ Church is marked. Figure 53 shows
the repackaged equipment for flying on an Air Force C141 <transport
plane. Figure 54 shows the equipment mounted on a cargo pallet with the
surrounding thermal protection enclosure. Figure 55 shows the pallet
carrying the equipment being loaded into the C141. TFigure 56 shows a
later step in the loading process. Figure 57 is a picture taken during
one of the flights. The equipment for recording the inertial navigation
systems and air-to-ground radar information from which to calculate the
proper time integral is on the table on the left,

Other experiments were done recently by Bob Vessot and Marty
Levine 7, with a hydrogen maser in a rocket probe, in which the ratio of
the measured to predicted value was 1 + (2.5 + 70) x 10 °. This is
better than a hundredth of a percent confirmation. They measgured
frequency rather than time directly, but the same basic equation that
we've heen working with had to be used. The great thing about their
experiment was the ability to essentially cancel out the Doppler effect,
and ionospheric, which is two parts in 107, sufficiently well to measure

13 R. F, C. Vesgsot and M. W. Levine, "A Test of the Egquivalence

Principle Using a Spaceborne Clock,™ General Relativity and Gravitation,
Vol. 10, No. 3, pp 181 -204 (179).
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to 10_4 the effect of the potential, which is only four y1010, by a very

clever three-frequency cancellation scheme, Figure 58 shows the Scout
rocket that was used in that experiment, and Figqure 59 shows its
trajectory rising to several earth radii and falling back into the
Atlantic Ocean. Unfortunately, there's no time to go into more details.

SOME APPLICATIONS

Let us now consider some practical engineering applications.
Figure 60 is an artist's view of the GPS/NAVSTAR system, which I think
now has only 18 satellites planned rather than the 24 shown here. They
are in 12 hour period orbits, and they carry very good atomic clocks.
The circular orbits are about 14,000 kilometers above the earth's
surface. Figure 61 illustrates the way in which the system works. A

THE BEAJLC

Right:

Figure 61

Below: Figure 60
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user receives lL-band signals from each of several satellites, consisting
of a coded bit stream whose rate is set by the onboard atomic clock at
10,23 MHz. The user's receiver is equipped with the same code, which is
shifted in time to lock on to the satellite bit stream. By doing
microprocessor calculations from four satellites, the user's equipment
finds out where he is and also what the time is. But for all of this to
work, the satellite clocks must be synchronized with the GPS master
station. You have to allow for the gravitational potential and moticnal
effects of General Relativity, which we have been discussing.

In the Global Positioning System, the calculations can be made in
the way we have demonstrated.

2
dt = (1 + Psat _ Tsar ) at
sat 2 2 i
! 2¢
2
?ground Vground
drt = (1 + - ) dt
ground 2 2
c 2c

Dividing the equations, and retaining only the constant and first order
terms,

dat - v - v
sat q‘)sat ¢ground _ sat ground

art 2
ground c 2c

Evaluating this expression for the NAVSTAR circular orbit, one finds,

d

T
NAVSTAR 10

T = 5.1 x 10 = 44,000 ns/day
ground

This result means that if a NAVSTAR atomic clock has a certain relative
rate to the GPS master clock when they are side by side at an elevation
corresgponding to the mean ocean surface (the surface used for reference
in the GPS system as well as for UTC) -- say 20 ns/day -~ this rate will
be increased by 44,000 ng/day when the clock is placed in orbit. This
was observed in 1977 by the Waval Regearch Laboratory with the NTS-2
satellite.14 But bhefore that, there had been some doubt on the part of
some people associated with the GPS program whether these effects were
actually there. I remember well a meeting at the GPS offices in the
Spring of 1976, when Gernot Winkler, ILen Cutler and I presented the

14

T. McCaskill, J. White, 8. Stebbins, and J. Buisson, "NTS-2
Fregquency Stability Results," Proceedings of the 32nd Frequency Control
Symposium (1978).




results of out P3C aircraft clock experiments when such questions were
raised.

I1f there is some eccentricity to the orbit, there will be a
periodic change in the distance of the gatellite from the center of the
earth. For an eccentricity 5 x 10_3, the change in gravitational
potential is anough to produce an amplitude of 12 nanoseconds (peak to
peak of 24ns) with a 12 hour periodic in the onboard clock reading.
This would produce an errxor in position of 24 feet, if not allowed for.

One must understand and include these effects correctly, as the GPS
now does. TFor the large relativistic offset in clock rate in orbit of
+44,000 ns/day, one adjusts the clock so that on the ground it would
have a rate of -44,000 ns/day with respect to the reference GPS clock.
This compensates for the relativistic effect when it is put into
orbit. Once this is done, there is no longer a "gravitational red
{(blue) shift" on transmitted frequencies from the satellite to the
ground, even though the radiation passes through a difference of
gravitational potential A¢. Thig mistake was made by one of the GPS
contractors during the development of the system. It is a natural
mistake following from an often presented derivation of the blue shift
in terms of the energy of a photon2 E = hv, at the satellite; the mass
equivalent of the photon, m = hv/c ; and the gravitational energy
c¢hange mAd¢. If hvu' is the energy of the photon at the ground, energy
conservation gives the equation

hv' = hv + (hv/cz)Acb

'- v
or E_U___ = Ad)/c2

This argument does not hold if the <clocks have been adjusted as
described above.

There is an upcoming experiment called LASSO, Laser Synchronization
from Stationary Orbit, being done by the European S$pace Agency with
the first operational launch of the ARIANE rockets, currently scheduled
for April 1982. 'The experiment is on the Sirio 2 satellite, as shown in
Figure 62. There will be corner reflectors, an avalanche photodiode
detector, an event timer and a crystal clock on the satellite. Lasger
pulses will be fired at this synchronous satellite from the 1.2m
telescope at the Goddard Optical Research Facility in a cooperative
undertaking by the U. S. Naval Observatory, the University of Maryland,
and NASA; and from several laser stations in Europe. The technigque is

> B, . & Serene, "Progress of the LASSO Experiment,” Proceedings of
the Twelfth Annual Precise Time and Time Interval (PTTI) Applications
and Planning Meeting; NASA Conference Publication 2175, pp 307 - 327,
December 2 - 4, 1980,
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Figure 62 Figure 63

esgsentially the same as that used in the P3C aircraft experiments. The
goal for the first experiments is one nanosecond synchronization between
the United States and Europe. It is hoped that this will be the first
of a series of satellite experiments with the goal of one tenth of a
nanosecond synchronization later on. Since the comparisons on the
satellite will be made rather close in time, we don't have to worry too
much about the relativistic effect, but we -just note that it is on the
order of 50,000 nanoseconds per day, or about 6/10ths of a nanosecond
per second. S50 if one has a goal of one nanosecond and one lets the
reception between pulses spread over a few seconds, you may have to
worry a bit about this effect.

There is a third space experiment which T wish to discuss this
afternoon. This is the proposed ghuttle Time and Frequency Transfer
experiment which we call STIFT. The plan has been developed by D. W.
Allan of the National Bureau of Standards, Rudolf Decher of the Marshall
Space Flight Center, Gernot Winkler of the U.8. Naval Obsgervatory, and
the speaker. The idea is shown in Figure 63. There would be a
hydrogen maser and other c¢locks on the shuttle, along with microwave
frequency comparison equipment of the type developed by Vessot, et al.,
for the rocket probe relativity experiment, and laser pulse time
comparison equipment of the type developed by Alley, et al., for the P3C

16 R. Decher, D. W. Allan, C., O, Alley, R. F. C. Vessot, and G. M. R,
Winkler, " A Space System for High-Accuracy Global Time and Frequency
Comparison of CLocks," Proceedings of the Twelfth Annual Precise Time
and Time Interval (PTTI) Applications and Planning Meeting; NASA
Conference Publication 2175, pp 99 - 111, December 2 - 4, 1980.
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aircraft relativity experiments. It now appears that the principal
uncertainty in the STIFT technigue will be that imposed on the
calculation of the proper time integral by lack of knowledge of the
velocity of the space shuttle.

¢, = ¢ (v - v
- s & _ 5 G
g~ e = [ 2 2 ] de
] 2c

For a several hundred kilometer orbit,

\'4
S —
5 = 3 x 10

2¢

10

. . : . . , -14 ,
If we wish to maintain a fractional time uncertainty At/t = 10 which
the hydrogen maser is capable of, one must have

Al vsz/ 2c2 ) 2A v

2 2
( vs / 2c ) v

This requires that Av = 10cm/sec. This may be very difficult to know
without special instrumentation such as high quality inertial navigation
systems. For this technique, the limiting performance for time transfer
may be set by relativity rather than by clock performance!




QUESTIONS AND ANSWERS

DR. WINKLER:

Maybe one comment is in order and that is in Professor Wheeler's
concept that the space geometry, or space time geometry has to tell
the planets where to go.

This, to me, seems like a step backwards. Because 300 years
ago Kepler had much more definite ideas. He had an angel pushing
the planets.

PROFESSOR ALLEY:

Some of Wheeler's recent thinking goes much beyond that. What this
is, though, if you want to be a genuine relativist, as, say, in-
terpreted by Wheeler and his school in the last 30 years, you think
of no more Newtonian forces, no more angels. You have curve space
time as displayed by this metric, with these metric coefficients.
And then you try to move as straight as you can in the curve space
time. And you end up going around the sun in an elliptical orbit.
And, furthermore, you get the precession of the periheljon. You
get the defraction of light. Plus all these rather remarkable
things that people are now calculating busily.

Suppose you've got a rotating black hole and matter falling
in. This whole theory has to be applied. And you can get these
jets coming out, and enormous energies, and what not.

VOICE:

With regard to the suggestion you can multiply and get from the

base line, do you anticipate the source is going to be closer than

a parsec? Or are you going to get down into billionths of a parsec?
MR. MANKINS:

For what? The source of the gravitational wave?
VOICE:

Yes.

MR. MANKINS:

The source would be very, very distance. Many parsec.




VOICE:

May I suggest you forget your second experiment?

MR. MANKINS:

Well, if the gravity wave propogates at the speed of 1light, then
for a maximum angle, i.e., say it came perpendicularly on the base
line between the two stations, there would be some time delay be-
tween its arrival at the two stations on the order of a 30th of a
second. Which is very large from frequency and timing values.
Microseconds,

And that's all you would be looking for is the time delay be-
tween the arrival at the two stations.

VOICE:

The other question had to do with the uniqueness of this particular
event. In your experimental considerations, do you have any basis
for Tooking to see whether this is an act of nature, a gravity wave,
an accident in data processing?

MR. MANKINS:

Well, that would be one of the good points about having two stations.
With a single station and a single spacecraft you are more subject to
some accident.

Where if you had two stations, and both of them independently
recorded the event, you're safer from accidents.

Also if you've got some real correlation.
SECOND VOICE:

How frequently do these gravity waves occur, so that you know how
long to look for them?

MR. MANKINS:
I believe in the paper by Thorne and Breginski, circa 1975, that

they anticipated periods somewhere between a week and 10 years for
a single event.

But the, 1ike I say, those numbers were very cosmological,
i.e., subject to change.




PROFESSOR ALLEY:

It is possible that the low frequency gravity waves that you might
detect this way could be a result of primordial conditions in the
universe, if the big bang, and so on, is correct.

There could well be some rumbling, rumbling thunder of gra-
vity waves throughout the whole universe.

MR. MANKINS:
Still wandering about.

PROFESSOR ALLEY:

Might be picked up.






