AFTERNOON SESSION

MR. ALFRED KAHAN, Rome Air Development Center

This afternoon session considers improved timing devices, namely Rubidium
Frequency Standards, and a continuation of a topic of Synchronization.

Several years ago, I think it was in 1978, according to the proceed-
ings of this conference, I made some remarks, during one of the panel ses-
sions regarding the lack of research and development in rubidium fre-
quency standards. And even the possible obsolescence of the standard.

Clark oscillators promise quantum improvements and cesium standards
were suppose to become smaller and cheaper, and rubidium was being squeezed
in the middle. At that time, and since then I have received severe re-
action to those comments, and I think in this same spirit the organizing
committee considered it poetic justice that I should chair this session
on R&D and Rubidium Frequency Standards.

Before I call the first paper, I would like to relate to you an
incident I had this weekend. I was over at some friend's house and she
showed me a collector's bound volume of the illustrative London News
from 1871, which was a beautiful copy of a combination of 1ife and time
type of thing of today. Today it has a little bit of times, a Tittle bit
of sports, and has everything else. In that one it was related that, in
the June 3rd issue of 1871 that was called clocks and photographs. And
evidently Mr. Norman Lockyer, who I'm told by Dr. Winkler is a known
astronomer, gave his sixth Tecture on instrumentation using modern as-
tronomy, that was devoted to clocks and photographs, as such. And he
went on to review the history of the development of clocks starting with
Archimedes and the wheels moved by weight. And then he mentioned that
the first clock in England was in Court Place Yard in Westminister in
1268. And then he started with the further development in 1639 by
Galileo, who discovered the isochronal properties of oscillating bodies
suspended by equal strings and hope that would apply in 1658 by Huygens
to the suspended pendulum and things like that. And then he recalled
the further developments of Hooke, Clemens, Grayham and Harrison.

Let us just continue then, Mr. Lockyer by 8 of diagram explained
this successive improvement and then proceeded to exhibit in action a
splended modern astronomical clock, loaned to him by Colonel Strange
J stating that the principles now demanded in such clocks are that the
weight shall be small, and the pendulum heavy, and that there shall be
as solid a connection between the two as possible, A word to the pre-
cautions necessary to be observed to preserve the pendulum from the
action of temperature as much as possible in order to take advantage
of the compensated pendulum. Then he went on to say, Mr. Lockyer then
referred to Sir Charlie Whitstone's patent in 1840 to apply the electro-
magnetic force to record a very minute section of time and thought that
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a tenth of a second or less they could do it that way. Then Mr. Lockyer
concluded by demonstrating the great importance of photographs in that
the determination of the longitude of distance places, such as Washington.

This was 111 years ago. I just wonder if anyone 111 years from to-
day will read our proceedings; What's their opinions of our world, one
hundred and eleven years from now?
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ABSTRACT

The error signal which is used to control the fre-
quency of the quartz crystal oscillator of a pas-
sive rubidium cell frequency standard is consider-
ed. The value of the slope of this signal, for an
: interrogation frequency close to the atomic tran-
sition frequency is calculated and measured for var-
jous phase (or frequency) modulation waveforms, and
for several values of the modulation frequency.
A theoretical analysis is made using a model
which applies to a system in which the optical
pumping rate, the relgxation rates and the r.f.
field are homogeneous”. Results are given for
sine-wave phase modulation, square-wave fre-
quency modulation and square-wave phase modula-
tion. The influence of the modulation frequency
] on the slope of the error signal is specified.
| It is shown that the modulation frequency can
| be chosen as large as twice the non-saturated

*) A typical experimental sdtuation satisfying approximately Zhese conditions

L5 that of a small cell placed in the center of a TEy,, cavity.




ful1-width at half-maximum without a drastic loss
of the sensitivity to an offset of the interro-
gation frequency from line center, provided that
the power saturation factor and the amplitude of
modulation are properly adjusted. The interest of
square-wave phase modulation is pointed out for
Targe modulation frequencies.

Experimental data has been obtained on a labo-
ratory set-up in which a rubidium cell fills a

TE microwave cavity.

Ex&&%imenta] results achieved with this config-
uration are in excellent agreement with the
predictions of the given model.

1. INTRODUCTION

In passive frequency standards, such as the rubidium cell frequency standard,
frequency control requires that the microwave interrogation signal is phase
(or frequency) modulated. An error signal is obtained, which is proportional
to the offset of the interrogation frequency from the line center, if this
offset is small enough. The error signal drives the frequency control loop.
The siope of this error signal has to be optimized in order to achieve the
best frequency stability of the controlled quartz crystal oscillator. In
practice, the modulation frequency should be Targe enough, i) to allow ampli-
fication of the modulated atomic cell response in a frequency range where
shot noise dominates flicker noise and ii) to enable a reduction of the at-
tack time of the frequency control loop, in order to ensure a better attenua-
tion of the effect of perturbations, such as acceleration, which might affect
the frequency of the quartz crystal oscillator.

Although investigation of frequency modulation effects has been performed by
several authors in the framework of magnetic resonance experiments, very few
analysis of frequency modulation has been given, which are directly applica-
ble to the field of atomic frequency standards [1-4]. Furthermore, previous
results are of limited practical interest because r.f. power saturation ef-
fects were not taken into consideration.

In this paper we give :

i) analytical expressions for the slope of the error signal as-
suming, at first, that the modulation is slow. Optimum values of the satura-
tion factor and of the modulation depth are specified for sine-wave phase
modulation and square-wave frequency modulation. The achieved results are
used as a basis for further comparison with results derived when the dynami-
cal behaviour of the atomic medium has to be taken into consideration i.e.
when the modulation frequency is not small compared to the atomic Tline-width.

ii) analytical expressions for the slope of the error signal,
for arbitrary values of the modulation depth and of the modulation frequency,
but for weak saturation. We show that the results derived by Andres et al[1l]
and which were the only available for a lTong time are not exact.
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iii) computed values of the slope of the error signal, for a
large range of values of the saturation factor, the modulation depth and the
modulation frequency. Sine-wave phase modulation, square-wave frequency modu-
lation and square-wave phase modulation are considered. The influence of the
value of the modulation frequency on the slope of the error signal is speci-
fied. The values of the saturation factor and of the modulation depth which
maximizes the slope of the error signal are given.

iv) experimental values of the slope of the error signal for a
rubidium cell filling a TE 1 microwave cavity. Results are obtained for the
three considered modu1atio% %aveforms. They confirm that the reduction of the
error signal is small at modulation frequencies up to twice the non-saturated
atomic line width.

2. THE MODEL USED FOR THE THEORETICAL ANALYSIS

In order to point out the results of major interest, we will consilder a mod-
el in which the following simplifying assumptions are made.

i) the properties of the rubidium cell are homogeneous. This
means that any effect related to the progressive absorption of 1ight inside
the atomic cell is neglected and that the 1ight intensity is a constant
across the light beam cross-section. In particular, the longitudinal and
transverse relaxation times T, and T,, respectively, will be assumed con-
stant over the cell vo1ume.Mo%1ona1 gveraging in a coated cell without buf-
fer gas would yield homogeneous values of T, and T,.

ii) the microwave field is uni%onn ovér the rubidium cell vol-
ume.This condition is approximatively verified close to the center of a
microwave cavity in which the TE011 mode is excited. On the contrary, the
amplitude of the microwave field varies largely over the volume of a
rubidium cell filling the entire volume of a TEy11 cavity, an arrangement
which is used widely in practice, in order to re&uce the size of the fre-
quency standard. However, we show in Section 7, that the experimental re-
sults are in very satisfactory agreement with the theoretical predictions
and that, consequently, the model chosen is adequate.

ii1) rubidium atoms behave as a two-level quantum system in
which optical pumping has created the necessary population difference.

The given results are valid for passive frequency standards in which the
atomic resonance is probed via a measure of the population difference be-

. tween the two involved atomic levels. This measure consists either in the

1 monitoring of the absorption of the pumping light, as in the passive rubi-
¥ dium cell frequency standard, or of the fluorescence of the optically pump-
ed medium, as in the mass 199 mercury ion device.

Throughout this paper, we will assume that the following condition is ful-
filled :
Wy T Wy << W (1)




where w; is the interrogation angular frequency*, w_1s the atomic transition
angular'frequency and W is the full-width at half- ° maximum of the atomic
resonance line (expressed in angular frequency unit).

The modulation depth will be characterized by a dimensionless parameter, Uy
defined as : :

up = T, (2)
where w_1is the amplitude of the periodic angular frequency deviation.

Similarfly, we will introduce the normalized modulation frequency Z defined
as

where w,, is the modulation angular frequency.
We will "assume that synchronous detection consists in the multiplication of

the fundamental component of the periodically modulated cell response by a
demodulation function g'(t) such as :

+1 for 0 < t < TM/2

g'(t) ={ (4)
-1 for TM/Z <t < TM '

3. THE STATIC LINE SHAPE

It may be shown that the intensity I of the 1ight transmitted by the rubidium
cell is given by :
S

I=I_+1_ 1|1-

o " 1o | 1+s+1'22 (w0 )
where I, is a background component, I _depends on the atomic density in the cell
and on %he properties of the Tlight £18x emitted by the rubidium lamp. The
quantity S is the saturation factor defined as :

s = T1T2b2 (6)
where T1 and T, are the longitudinal and transverse relaxation times, respec-
tively * and b®fs a measure of the microwave field applied to rubidium atoms.

- (5)

Equation (5) describes the resonance line as a lorentzian function of the dif-
ference between the angular frequency w of the microwave field and the angu-
Tar transition frequency W, * The full-width-half-maximum of the line, W, is
given by :

*) The interrnogation ghequency L4 the mean value of the modulated insitantane-
ous prequency. Therefore, equation (1) does not mean that we restrnict oursels

to smakll time dependent frequency deviations. On the contrary, we will consi-~

gin frequency excursions which are of the orden of magnitude of the atomic
ne-width.




W=E /IR (7)
and the height 2 of the resonance line is IR such as :

[ =1 (8)

) 0 145
where the minus sign indicates that the resonance appears as a dip in the
transmission profile of the resonance cell. For very large values of S, we
have I, = - I .

L 0

4. THE NORMALIZED SLOPE OF THE ERROR SIGNAL

The error s1gna1 which is useful for frequency control of the quartz crystal
oscillator is proportional to the low-pass component of the synchronous detec-
tor output. Under the condition given by equation (1), it is proportional to
the angular frequency offset of the interrogation frequency from the 1ine cen-
ter. We then define the following normalized slopes of the error signal for

(wg = w )<< W TTEYGT(E)

i) p=-" (9)

LoTolug = w)

where I (t) is the component of the fundamental of the cell response which is
in phasg with the modulation waveform. The bar means time average.

3 ROHEG)
i) q = (10)
I Tz(oo_i - mo)

where I (t) is the component of the fundamental of the cell response which is
in quadgature with the modulation waveform.

1/2
1i1)  a= (p° + ) (11)

This is the slope of the error signal when the phase of the fundamental of
the cell response and of the demodulation signal are matched.

5. SLOW FREQUENCY MODULATION

In the condition of slow frequency modulation, the period T, = 2n/w, Oof the
frequency modulation is large compared to the atomic 1ongitmd1na1 amd trans-
verse relaxation times. We then have :

v, =0 (12)
In this quasi static approximation, the atomic medium is assumed to reach a

steady state for every value of the angular frequency w of the applied micro-
wave field. Equation (5) is then valid, with w depending on time.




5.1. Square-wave frequency modulation

The instantaneous angular frequency w(t) is given by :
w(t) = w; * wmg(t) (13)

where g(t) is the modulation function which describes the frequency modula-
tion waveform. For square-wave frequency modulation, it is given by :

+ 1 0 <t < TM/2
g(t) = (14)
-1 TM/2 <t < TM
It can easily be seen that under condition (1), the fundamental component of
the modulated 1light intensity, which is transmitted by the rubidium cell is

in phase with the frequency modulation waveform.

We have : : 8 SUZTZ(mi-wo) .
p(t) = IO " sin wMt (15)
(1+S+u2 )

The fundamental component of the demodulation waveform g'(t) being (4/w)sin
th, the normalized slope a of the error signal is given by :
Su
_ 16 2 :
= 5 (16)
T (1+S+u2 )

It can easily be shown that the maximum value of a = 0.203 occurs for S = 2
and u, = 1. These values define the optimum operating conditions for applied
microaave power and modulation depth. Figure la shows the variation of a
versus the quantity Uy for different values of S.

a

5.2. Sine-wave frequency modulation

The frequency modulation waveform function g(t) of equation (13) is now :
g(t) = sinwy t (17)

The fundamental component of the transmitted light intensity can be either
derived directly thanks to standard techniques of calculation of the coef-
ficients of the Fourier series expansion of the response, or using general
results obtained by Arndt [5] who has analyzed the quasi-static sine-wave

frequency modulation of a lorentzian line.

The fundamental of the cell response is in phase with the frequency modula-
tion waveform, and we have fg
4 U2
(1+S)1/2(1+S+u22)3/2
The maximum value of a = 0.189 is achieved for S = 2, as in the previous case,
but for u, = 1.22. Figure 1lb shows the variation of a versus the quantity Up
for diffegent values of S.
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Fig. 1, Quasi static approximation. Variation of the normalized
slope a of the error signal versus the normalized modula-
tion depth u, = T,w for different values of the saturation
factor S, in"the qugsi—static approximation.

a) square-wave frequency modulation with narrow band
filtering of the response, at the modulation fre-
quency.

b) sine-wave frequency modulation with narrow band
filtering of the response, at the modulation fre-
quency.

6. INFLUENCE OF THE MODULATION FREQUENCY ON THE SLOPE OF THE ERROR SIGNAL

6.1. Bloch equation of the modulation problem

In general, the behaviour of any two level quantum system which follows as-
sumptions i) to iii) of Section 2 can be described by Bloch equations [ 6 1].
For a AF = 1, Amp = 0 transition, as used in an atomic frequency standard,
those equations are best expressed in terms of the so-called coherence of
the atomic medium, a(t), and of the population difference between the two
atomic levels, a3(t). The quantity a(t) is a compiex one, and we set a(t) =
al(t) + iaz(t).

It can be shown that, in the presence of modulation, the B16ch equations of
the considered problem are the following :




T2a1 + a1 + 7T

i}

plws-w )a, T, b a, sin'f

Tha, + a, - Tz(mi-mo)a1 =T, b ag cosp (19)

Tla3 ta; = ATI - le(al sin + a, cos‘'? )
where the dot means time derivative. The quantity )\ is the creation rate of
the population difference which in the present case is obtained by optical
pumping. The time dependent quantity P is the instantaneous phase of the mi-
crowave interrogation signal, and the instantaneous angular frequency is :

w(t) = ws +“é (20)

The quantity of interest to us is the population difference a,(t) merely be-
cause the transmitted light intensity changes are proportionaY to a.,(t). We
will consider the fundamental component of a,(t) in the presence of“specified
phase modulation waveforms. From now on, the“in phase and in quadrature compo-
nents of the fundamental of the cell response will be referred to the phase
modulation waveform rather than to the §requency modulation waveform,
A look at equations (19) shows the following :

1) they are coupled to a degree which depends on the microwave
field amplitude b, and thus of the saturation factor S

ii) the driving terms in their right hand sides are periodic func-
tions of time which need to be represented by Fourier series with in general
an infinite number of terms. Equations (19) then generate, in general, an
infinite set of coupled equations.

Consequently, it is not tractable to derive analytical solutions for the quan-
tity a,» unless simplifying assumptions are made. One of them is the weak
satura%ion assumption which will be considered in Section 6.2, Equations (19)
have also been analytically solved for arbitrary saturation, but under the
assumption of fast modulation, for which the spectrum of the cell response

can be limited to frequencies Wy 0 and + wy - The related results will be
published elsewhere.

For operating conditions prevailing in rubidium cell frequency standards,
equations (19) must be solved by numerical techniques. The results are
given in Section 6.3.

6.2. Analytical solution for weak saturation

As it will be shown later, operating conditions are optimized for saturation
factors larger than unity. However, we wish to consider weak saturation
(i.e. S << 1) at first with the purpose of pointing out that one should not
rely on previously published results [1] established under this assumption.

In quantum electronics, it is usual practice to expand the quantities such as
as a, and a, in increasing powers of the field amplitude, aqd to derjve S0-
lutions for Components of a given degree. However, the equations obtained are
more and more intricated as the degree of the considered component increases.
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We will Timit the expansion to degree two of field amplitude, i.e. to degree
one of saturation factor. The validity of the results is then limited to small
values of S, i.e. § << 1.

This perturbation expansion has been considered for sine-wave phase modulation,
square-wave frequency modulation and square-wave phase modulation [4].
We will focus here on sine-wave phase modulation.

We define the slopes p(z) and q(z) of the error signal when the fundamental

of the cell response is observed in phase or in quadrature with respect to the
phase modulation waveform. The superscript means that results are valid to
order two of field amplitude only. It comes :

1 (2) 1., 1,

5 1+v1 1 1+v1 2

APLCO N SR S (21b)

3 1+v12 1 1+v12 2
where we have v, = T wM and where the quantities a'l and a'z are given by the
following equat%ons :

g = W, { ]
aly == I —h-vjf»— Joo.{m) + J _(m)] J,(m) (22a)

2.2
w 1-47v
2 .
z II:;?CHZJZ [9gsp(m) =y y(m] I, (m) (22b)

J, is Bessel function of order 2. The quantity m is the phase modulation
index such as m = wm/mM. 2 is an integer.

In practice relaxation times T. and T, have values which are very close to-
gether, in the considered atom}c meditm. In order to derive general informa-
tion on the slope of the error signal, we set :

T1 = T2 = T (23)
in equations 21 and 22.
We then have : v, = v, = v = Tw, and u, = u = Tw_. The phase modulation index
is m= u/v. 1 2 M 2 m

Figures 2a and b show the variations of p(z) and q(z) , respectively, versus
the normalized modulation frequency v for different values of the normalized
modulation depth u. These sets of curves differ significantly from that given
by Andres et al [11. An examination of their derivation shows that the Ton-
gitudinal relaxation was not properly accounted for. In figures 2a and b, the
undulations are related to additional resonance features which occurs at fre-
quencies w, Ry in the presence of periodic phase modulation.
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Fig. 2. Sine-wave phase modulation and weak saturatiom (S << 1).
The curves show the variation of the slope of the error
signal versus the normalized modulation angular frequency
v = Tw, and for different values of the normalized modula-
tion depth u = Tw .

a) the fundamental of the cell response is observed in
phase with the phase modulation waveform.

b) the fundamental of the cell response is observed in
quadrature with the phase modulation waveform.

6.3. Computed results for values of the modulation frequency of the modu-
lation depth and of the saturation factor in ranges of practical
interest

The set of equations (19) has been integrated numerically, assuming T1 = T2 =
T for sine-wave phase modulation, square-wave frequency modulation and
square-wave phase modulation. The quantity (w; - w_) has been fixed to a
value which equals 1/10 of the half-width at Half-Maximum of the non-
saturated resonance line (i.e. Tz(mi - w_ ) =0.1). It has been checked that
this offset is small enough that it 811ows a precise enough calculation
of the slope of the error signal, and of the phase of the fundamental of the
cell response, for w; = w_. Physically sound initial conditions have been
chosen and the numerical iﬂtegration has been performed until transient
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effects vanish. The components of the fundamental of the population differ-
ence change which are in phase and in quadrature with the modulation wave-
form are extracted using standard techniques of Fourier coefficients compu-
tation. The values of the slopes p and q are then derived. Physically, they
are obtained when the fundamental of the cell response is observed in phase
or in quadrature with respect to the phase modulation waveform.

In the following we will give the values of the slope a , defined by equa-
tion (11), which is obtained when the reference signal applied to the syn-
chronous detector is delayed in order to match its phase to that of the fun-
damental component of the cell response. The phase of this fundamental, rela-
tive to the phase modulation waveform is ¢ given by :

tan ¢ = % (24)
Double precision computation techniques have been used to derive numerical

results. Furthermore, it has been checked that the computed results agree
with analytical ones, in the limits of weak saturation, or fast frequency
modulation, for the three considered types of phase modulation.

6.3.1. Results for sine-wave phase modulation

Figures 3a to 3e show the computed variation of the slope a of the error sig-
nal and of the phase ¢ of the fundamental of the population difference
change versus the normalized modulatign depth u = Tw_ for different values

of the saturation parameter S = T1T2b2, which is prowortional to the micro-
wave power. Figures differ by the value of the normalized modulation fre-
quency v = TmM.

On figure 3a established for a relatively slow frequency modulation such as
v = 0.1, the circles represent values calculated under the quasi-static ap-
proximation i.e. for v = 0, according to equation(18). For v = 0, the funda-
mental of the population difference change is in quadrature with the phase
modulation of the interrogation microwave field. One sees that the validity
of the quasi-static approximation is extremely good for v = 0.1.

Figures 3a to 3e are for increasing values of the modulation frequency. The
origin of the undulations is the same as in figures 2a and 2b.

Table 1 gives, for specified values of the normalized modulation frequency v,
the values of the saturation factor S and of the normalized modulation depth
u for which the slope a of the error signal is a maximum. It shows off the
main result : the slope of the error signal does not depend strongly on the
modulation frequency provided that the saturation factor and the modulation
depth are properly increased as the modulation frequency takes larger values.
For instance, for v = 1.9, i.e. for a modulation frequency almost equal
to the non-saturated full-width- at half-maximum, the slope a may be made
equal to its value for slow frequency modulation. It may also be noticed that
the 1oss in the value of the slope remains small for v = 4,
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Fig. 3. Sine-wave phase modulation computed results. Variation of
the slope of the error signal and of the phase ¢, versus
the normalized modulation depth u and for different values

of the
a) v =

b) v
c) v =
d) v
e) v

saturation factor S.

0.1. Circles represent the values calculated under
quasi static approximation, according to equation (18).
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2.0 1.22 0.189 1.57
0T 2(t1) | 1.1(x0.3)] 0.187 1.47
T.0 ] 2 (+1) | 1.4 (+0.3)] 0.190 0.60
1.9 | 3 (+1) | 2.0 (+0.3)] 0.189 = 0.30
28| 4(+1 | 3.5(+0.5)] 0.166 = 0.87
3.7 | 6 (+1) ] 5.5(+0.5)| 0.160 - 1.10

Table 1. Sine-wave phase modulation computed vafues. For a given
value of the normalized modulation frequency v, the slope
a of the error signal shows a maximum for the specified
values of the saturation factor S and of the normalized
modulation depth u. :
For v = 0, results are derived from the quasi-static
approximation. The quoted uncertainties on S and u
are equal to the step of change of these parameters
in the computations made. The phase ¢ is expressed in
radian.

6.3.2. Results for square-wave frequency modulation

Figure 4 shows an example of the computed variation of the slope a of the
error signal and of the phase ¢ of the fundamental of the population differ-
ence change versus the normalized modulation depth u, for different values
of the saturation parameter S.

Table 2 gives, for specified values of the normalized modulation frequency v,
the values of the saturation factor S and of the normalized modulation depth
u for which the slope a of the error signal shows a maximum.

For v = 0.1, the computed results are closely identical to the results obtain-
ed under the quasi-static approximation, and given by equation (16). The

same sort of remarks and conclusions which have been made for sine-wave phase
modulation apply for square-wave frequency modulation.
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and of the phase ¢, for v = 3.7,
versus the normalized modulation
depth u and for different values

of the saturation factor S.

-04 2 4 ii;éé/ hal
-08L
L A ————— —
) u a d
2.0 1.0 0.203 1.57
0.1 2 (+ 1) 1.1 (+0.3)] 0.201 1.47
1.0 2 (+ 1) 1.1 (+0.3)] 0.197 0.59
1.9 3(+1) 1.7 (+ 0.3)} 0.1/8 - 0.30
2.8 4 (+ 1) 2.5 (+0.5)] 0.163 - 0.85
3.7 6 (+ 1) 4.0 (+ 0.5)] 0.157 - 1.09

Table 2. Square-wave frequency modulation computed valfues

. For a given value

of the normalized modulation frequency v, the slope a of the error
signal shows a maximum for the specified values of the saturation
factor S and of the normalized modulation depth u. For v = 0, re-
sults are derived from the quasi-static approximation. The quoted
uncertainties on S and u are equal to the step of change of these
parameters in the computations made. The phase ¢ is expressed in

radian.
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6.3.3. Results for square-wave phase modulation

For square-wave phase modulation, the atomic medium response is entirely found-
ed on transient effects which occur after phase jumps. In that case,the quasi-
static approximation is then meaningless, because the first harmonic content
of the cell response vanishes for v = 0. Intuitively, one might think that

the cell response is significant when the modulation frequency is of the or-
der of the atomic line-width. This is verified, in order of magnitude, by
quantitative results.

Figures 5a to 5d show the computed variations of the slope a of the error
signal and of the phase ¢ of the fundamental of the population difference
change versus the amplitude of the phase deviation P , for different values
of the saturation parameter S (it should be noticed M that the phase steps
amount to 2% ). Figures differ by the value of the normalized modulation
frequency v.

Table 3 summarizes the important results. It gives for the specified values of
the normalized modulation frequency v, the values of the saturation factor

and of the amplitude of the phase change‘?_ for which the slope a of the
error signal shows a maximum. The optimum Ualue of ¢ is close to m/4. This
slope decreases only very slightly from v = 1.9 to 3"7, in the explored

range, when the saturation factor $ and the phase change‘Pm are adjusted to
their increasing optimum values.

v S D a ¢
1.0 2 (+1) 0.8 (+0.1) 0.148 0.44
1.9 3 (+ 1) 0.8 (+ 0.1) 0.171 [ -0.42
2.8 4 (+ 1) 1.0 (+0.1) 0.170 | - 0.97
3.7 7 (+ 1) 1.1 (+0.1) 0.169 | - 1.15

Table 3. Square-wave phase modulation computed values. For a given value of
the normalized modulation frequency v, the slope @ of the error
signal shows a maximum for the specified values of the saturation
factor S and of the amplitude of phase deviation Y . The quoted
uncertainties on the values of these parameters are” equal to
their step of change in the computations made. The phases %’m
and ¢ are expressed in radian.
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Fig. 5. Square-wave phase modulation computed resulis.
Variation of the slope a of the error signal and
of the phase ¢, versus the amplitude of the phase
change (Pm and for different values of the satura-
tion factor S.

a) v+ 1.0
b) v =1.9
¢) v=2.8
d) v = 3.7

7. EXPERIMENTAL RESULTS

Experimental results have been obtained with a set-up having a widely used
configuration. An isotopic filter, with 80 Torrs of argon is used. The Rb
cell containing 20 Torrs of nitrogen is operated at 60° C. It fills almost
entirely a cylindrical microwave cavity operated in the TE 1 mode. In this
experimental arrangement, optical pumping and relaxation a;é not homoge-
neous in the cell. In addition the microwave magnetic field amplitude shows
lTarge variations over the cell volume. The experimental results can then be
used to check the ability of our model to predict the influence of the modu-
lation frequency on a practical device.
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An average saturation factor S' is defined from the dip of the transmitted
light at microwave resonance. We have, from equation (8)

St o= - I/(I, + 1) (25)

The value of the transverse relaxation time T, is measured by extrapolating
the atomic line-width to zero microwave power. It is found that the full-
width at half maximum W varies as follows :

W =W A1+ ost) (26)
where wo = 2/T
a=5,2" and

5 is the non-saturated Tinewidth. Experimentally, one has

Ty = 1.77 + 0.18 ms

It can be shown that the value of o« depends on the microwave field configu-
ration, the light intensity, the length of the cell, the temperature and
also on the area of the photo cell exposed to the transmitted light.

The value of the longitudinal relaxation time is measured by observing the
exponential variation of the transmitted Tight intensity after the microwave
power has been switched off. We have

T, = 1.82 + 0.04 ms

Thus it turns out that the condition T, = T. which has been assumed in Sec-
tion 6.3. is fulfilled quite satisfactorily.
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The slope of the error signal is measured as follows. A quartz crystal oscil-
lator is frequency locked to the rubidium cell, but with a voltage added to
the synchronous detector output. The freguency of the quartz crystal oscilla-
tor is measured for two opposite values of the voltage, and the normalized
slope of the error signal is obtained. It has been checked that the offset

of the interrogation frequency from the resonance frequency remained smaller
than 1/10 of the full-width at half-maximum. The phase of the fundamental
component of the 1ight intensity changes shows an extremum for w. = w , SO
that its measurement was precise enough with the stated experimeﬂta] %pro-
cedure,

Sine-wave phase modulation, square-wave frequency modulation and square-
wave phase modulation have been applied to the microwave signal.

Figures 6a to 6d show the results for sine-wave phase modulation. The value
of the measured slope is smaller than the value calculated from the model,
and the optimum occurs for smaller values of the saturation factor (for

v = 0.1 the optimum value of §' is 1.3). However, for a given value of v,
the shape of the computed and of the measured variations is quite similar.
Table 4 summarizes the experimental results. It shows that the optimum value
of a does not depend drastically on the value of the modulation frequency.

v g u a x 10° ¢
0.11 1(+ 0.5) 1.3 + 0.1 9.3 1.48
1 1(+ 0.5) 1.5 + 0.15 8.6. 0.58
2.9 1.5(+ 0.5) 3.5.+ 0.25 5.6 - 0.51
3.7 2(+ 0.5) 4.2 +0.25 5.1 - 0.72

Table.4. Sine-wave modulation. Experimental values. For a given value
of the normalized modulation frequency v, the slope a of the

error signal shows a maximum for the specified values of the
saturation factor S' and of the normalized modulation depth u.
The quoted uncertainties on S' and u are equal to the step of
change of these parameters in the measurements made. The phase
¢ 1is expressed in radian.

Figure 7 shows an example of measured results for square-wave frequency modu-
lation with v = 3.7 and Table 5 gives the main results, with the same general
conclusions as for sine-wave phase modulation.
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Fig. 6. Sine-wave phase modulation. Experimental results.
Variation of the slope @ of the error signal and of
the phase ¢, versus the normalized modulation depth u
and for different values of the saturation factor S§'.

experimental points.
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cyv = 2.9 d) v
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S 52 Fig. 7. Square-wave frequency modulation.

Experimental results. Variation
of the slope a of the error
signal and of the phase ¢, for
v = 3.7, versus the normalized
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.01

fms modulation depth u and for dif-
K T T T B S T ferent values of the saturation
12 ?a ;f’ﬁ factor 8'. Circles represent
o 1 2 (ﬁigs 5/fﬁgj u_ the experimental points.
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v S! u a x 10 ¢

0.2 1 (40.5) 1.1+ 0.15 10.0 1.52

1 1 (+0.5) 1.26 + 0.15 8.6 0.79

2.9 1.5(+0.5) 2.5 +0.25 5.9 - 0.38

3.7 2 (40.5) 3.5 +0.25 5.3 - 0.60

Table 5. Square-wave frequency modulation. Experdimental values. For a
given value of the normalized modulation frequency v, the
slope a of the error signal shows a maximum for the specified
values of the saturation factor S' and of the normalized mod-

l ulation depth u. The quoted uncertainties on S' and u are
equal to the step of change of these parameters in the mea-
surements made. The phase ¢ is expressed in radian.




Figures 8a to 8c show the variation of the normalized slope a in the case of
square-wave phase modulation as a function of the amplitude of the phase devia-
tion &y for different values of the saturation factor S' and of the normal-
ized modulation frequency v. Again, the shapes agree quite satisfactorily,

but with smaller values of a and S'. Table 6 shows that the optimum values of
¥ , agree closely with the computed ones.

Comparison of Tables 4 to 6 shows that square-wave phase modulation yields an
optimum value of the slope a which is even larger than with the two other
types of modutation for v =~ 4,
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Fig. 8. Square-wave phase modulation.
Experimental nesults. Varia—
tion of the slope a of the
error signal and of the phase
¢, versus the normalized modu-
lation depth u and for diffe-
rent values of the saturation
factor S'. Circles represent
the experimental points.

a) v =1.0
b) v= 2.9
¢) v = 3.7
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v S! Y a x lO2 ¢

1 0.75 (40.5) 0.8 + 0.5 5.7 0.44
2.9 1 (+0.5) 0.9 +0.5 6.0 - 0.75
3.7 2.5 (+0.5) 0.95 + 0.5 5.5 - 0.63

TABLE 6. Square-wave phase modulation. Experdmental values. For a
given value of the normalized modulation frequency v, the
slope @ of the error signal shows a maximum for the speci-
fied values of the saturation factor S' and of the ampli-
tude of phase deviation P . The quoted uncertainty on the
values of these parameters are equal to their step of change
in the computations made. The phases \P m and ¢ are expres-
sed in radian.

8. CONCLUSIONS

Our theoretical analysis has been made with the assumption that optical pump-
ing, relaxation and the r.f. field are homogeneous over the rubidium cell.
Our experimental data has been obtained with a rubidium cell in a TE111 cavity
and those conditions are not satisfied. However, these results agree
satisfactorily with the theoretical predictions. Consequently, we may con-
clude the following :

i) for sine-wave phase modulation and square-wave frequency modu-
lation, the results of the quasi-static approximation can be used up to v = 1,
as far as the slope @ of the error signal is concerned. It yields a satis-
factory estimate of the values of the saturation factor and of the normalized
modulation depth for which this slope is maximum.

ii) for sine-wave phase modulation and for square-wave frequency
modulation, the slope a of the error signal decreases only slightly if the
modulation frequency is increased up to a value such as v = 4, provided that
the saturation factor and the modulation depth are adjusted to increasing op-
timum values specified in Tables 1 and 2. One sees that when the modulation
frequency increases, the Tine must be power broadened in order that the
linewidth tends to follow the value of the modulation frequency. Similarily,
the frequency excursion around the interrogation frequency has to be increased.

iii) for square-wave phase modulation, the optimum modulation fre-
quency is such as v = 2 and the slope a falls off very slightly for v > 2
when the values of the saturation factor and of the amplitude of the periodic
phase change are adjusted to the values given in Tables 3 or 6.

iv) for large modulation frequency such as v = 4, the slope a
becomes a little larger for square-wave phase modulation than for the two
other sorts of modulation which have been considered. Square-wave phase mod-
ulation might then be the best modulation method in applications where fast
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frequency modulation is required. In addition, it has other known specific
advantages such as ease of implementation and excellent immunity to non-
linear distortion of the phase modulator.
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QUESTIONS AND ANSWERS

(Signals inadequate for transcription for Paper #4.)
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