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ABSTRACT

In time and frequency metroclogy, the protlems of characterization, pre-
diction, approximation and modelization are of fundamental i1mporiance
for theoretical and experimental studies. In this paper, an improved
unified approach is proposed and developed, which is based on the opti-
mal estimation theory and the digitsl recursive processing methods. For
two different models of non-stationary time series, the digital recur-
sive methods of optimal estimation are presenied. By these unified me-
thods one can synthesize some digital predictors, digital fiiters and
digital differentiators. These digital estimators are used to charace
terize the frequency instabilities of atomie clocks, 1o predict the
random variations of atomic time scales, and o smooth the time series
data. For the modelization of the statistics of frequency and phase
fluctuations some analytical procedures are proposed. Then the Narkov
models of atomic clock instabilities can be deduced. In order to empha-
size the utility of the theory, application exanyples are given for some
time comparison data Ttetween commercial cesium atomic clocks.

I. INTRODUCTION

In time and frequency metrology, there are some problems of fundamental im-
portance for the theoretical and experimental studies of oscillatore and atomic

st

clocks: (1) modelization of the statistice of freguency and phase fluctuationss
(2) characterization of frequency and phase ingtatilities; (%) nrediction of
random variations of atomic time scalesy (4) approximatiorn or smocthing of the
frequency and time measurement data.

The commonly used methods of modelizaticn and characierizaticn are based
on stationary models as the basic assumption. In general, one must assume the
non-stationary models of variations of freguency and iime. In this case, the
method of structure functions is used for the characterization problem, the
least-squares method is used for the approximaticr protlse, and the fixed fil-
ter method or the ARIMA method are used for the rrediction problem. But the so-
lutions of problems provided by the atove mentioned merthods are not always com-
pletely satisfactory.

In this paper, improved unified methods are propcsed and developsd, which
are based on the optimal estimation theory and the digital recursive processing
methods. For the study of non—stationary fluctuations of frequency &@nd phase
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in atomic clocks, two different approaches are used. The first approach re-
lies on deterministic polynomial models with exponential weighting of data.
The second approach utilizes non-stationary stochastic models with station-
ary increments. The optimal digital recursive methods for the estimation of
non-stationary time series are developed for each of these two approaches.

By the unified methods one can synthesize digital predictors, digital fil-
ters and digital differentiators. These digital recursive estimators are used
for solving the probtlems of characterization, prediction and approximation.

From time comparison data between atomic clocks, one can use the digital
differentiators for the characterization of frequency instability. The trans—
fer functions of the differentiators are composed by two operations: pure
differentiation and low-pass filtering. This method allows us to estimate
the variance function and the power spectral density function. Therefore one
can characterize frequency instatbtilities both in the time and in the Pourier
frequency domains only from clock time comparison data.

From time comparison data between atomic clocks, one can use the digital
recursive predictors for the prediction of random variations of atomic time
scales. In the design of optimal predictors the additive measurement noise
is taken into account, which is not negligible for the time comparisons bet-
ween distant atomic clocks.

Time comparisons between atomic clocks via a satellite provide time se-
ries data. The conventional method for the smoothing of time series data is
the classical least-squares method. Put this method is not suited for the
real—time data processing. One can use the digital recursive filters for the
smoothing of time series by real—time data processing.

For the modelization of the statistics of frequency and phase fluctua-
tions, some analysis of internal noises in atomic clocks will be given, and
some theoretical Markov models of atomic clocks will be deduced. Then some
analytical procedures of spectral approximation and model identification
will be proposed. One can obtain the corresponding ARIMA models by the me—
thod of Z-transformation.

II. METHOD FOR CPTIMAL RECURSIVE ESTIMATION OF NON~STATIONARY TIME SFRIES
REPRESENTED BY DETERMINISTIC POLYNOMIAL MODELS

2.1 Problem Statement

In time and frequency meirology one often encounters problems where op-
timal estimators must be determined, which reproduce or transform random
signals carrying useful information constituting non-stationary random pro=-
cesseg. In this paragraph one will discuss the methods for determining op-
timal estimators in the case where besides a stationary random process the
input data contain a mathematical expectation which can be represented in
the form of a polynomial of finite order with respect to time.

When an optimal estimator is determined where the non-stationary part
of the signal is present, a more complicated problem must be solved for the
conditional minimum of the estimation error. Additional conditions arise
from the fact that the mathematical expectation of the signal must be esti-
mated with a given accuracy. At the same time, it is necessary to satisfy
the condition of "exponentially fading memory" of the estimator, which re-

478




duces to the condition that the signal at the output of the estimator must
be formed from the ohserved values of the input signal with an exponential
welghting.

In the solution of the ahove mentioned protlem, the clagsical Wiener
filtering theory is not applicable for two reasons: (1) it assumes that the
input signals are stationary random processes with zero mathematical expec—
tations, (2) it assumes that the output sigral is formed from an input sig-
nal observed over the semi-infinite time interval without weighting. Some
authors have solved the filtering problem for non-stationary polynomial in-
puts with finite observation time. But the optimal filters resulting from
their methods are difficult tc realize in appljcations.[15]

In this paragraph the main attention is focussed on the solution of the
problem of synthesis of optimal digital estimators for polynomial models
with exponential weighting of data. This approach has not teen considered
until very recently. But it can yield some important results for practical
applications.

2.2 Optimization with kxponential Weighting

One assumes that the time series data of measuremenis is represented
by y(ET)=g(iT)+n(iT) and g(iT)= ?":g.(irr)’ (2.1)
where g(iT) is the deterministic polynomial component, n(i7) is the sta-
tionary random component with autocorrelation function Ra(17) and power
spectral density S“(z). The output of the estimator is designated by x(iT),
and the desired output by x,(iT). The impulse response of the real estima-
tor is k(iT), and the impulse response of the jdeal estimatcr is h(iT).

Therefore one can obtain xd(lT)zﬁ‘gz h(iT)g(lT—iT) (2.2>
x(17)=T zf'; k(iT)[g(lq“-iT)+n(1T-fiﬁ (2.3
The error o;-estimation is €(1T)=x, (1T)=x(1T)= E’(IT)+ €,(17) (2.4)
where e (1m)=7 = (1T-1 (1)1 3 (1711 (IT) (z.4a)
€,(1T)=-T f-f'_'}o_ n(1T=-1T)k(iT) (2.4b)
The variance of random error of the estimation is
éfzmg.; k(i.T)T%R"(i.i‘mizT)k(izT) (2.5)

One can determine the optimal impulse response function k(iT) Tty the varia-
tional calculus with Lagrange multipliers. The minimum of the following ex-
pression will bhe determined.
o0 o0 o
J{k}-_-T;"_;k(i. )T By (3 T-1, T)k(d, T)+pT32_g(1T-1, 1) [h (i) T)=k (4, T)] exp(~aif)
b W (2.5
The decomposition of g(1T-i, T) to the Taylor series gives

. .' T\Z 7 ) .| : Y o
8115, D=g(1)-1, T O+ Fame s L o e

o0 [-=]
Thus one can obtain J{k}:T}"_:k(i, T){T;)R,,(i, T-izT)k(izT)-[2p°+2p, (i, 1)+
1= 1=

+2p, (1, T +---+2p, (4, T)’] exp(-ai, cr*)}+pfri g(1T—1, TYn(4, T)exp(-ai, T% |
. "= 2.8

-1\ )
where Zpizg—;%—g gl(lT) for i=0,1,2,-++,7
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By the rules of the calculus of variations, the optimal impulse response
k(iT), transforming the expression J{k} into a minimum, is determined from

K]

- J{k+ 8k} ., =0 (2.9)
where & is an arbitrary number. This formula is a necessary and sufficient
condition for obtaining the minimum of J{k}. In this way, substituting
k(1T)+ak(iT) for k(iT) in (2.8), one obtains J{k+Ak}=J{k}+24E,+&4E, (2.10)

oo ' 0
vhere g _t 22 k(1 TS k(1, T)Ra (4, T-1,T) (2.10a)

o =
By =T (i, D{TES k(L TR (4) T2 T)=[p, +p, 1, Top, (1, T 443, (3 T)r]ex;()(—ai.T%}
= ¥ 2.10b
Thus one finds that the condition for the minimum of J{k} is determined by
E, = 0, or equivalently, by the following eguation :

oo
TE_Ry (4, T-ia T)k(iz T)=[p, +p, 11 THp, (1, T +-- - 4p, (4, T) ] exp(~ai, T) (2.11)

2.% Solution of the Equation for the Optimal Impulse Response of the
Digital Estimator

One will now solve the equation (2.11), which determines the impulse
response of an optimal estimator. If the noise n(iT) is a statistically in-
dependent time series, then the correlation function of n(iT) can be expres—

sed by Rp(iT)=Rpe & (iT) (2.12)
where 8 (iT) is the Kronecker function defined by the following conditionss
§(iT)= 1 for i=0 , and & (iT)= © for ix O (2.12a)
In this case one can obtain
K(iT)=[Ae +A, iT+A, (iT) +---+ A, (iT) ] exp(=-aiT) (2.13)
where A, =R|-|'o Pas M =R;|'o Py A =Rpq Pryecey Ay =R;|'o Py (2'1 58-)
By performing the Z-transformation one can find the transfer function
w(z)zT%k(iT)z'”ﬂ é—[A,, +hy 1T+, (AT +- - +A, (1T) ] exp(-aiT)z™ (2.14)

In this formula Ae ,Ai JAz, - -,Ar are the constants to be determined.

If the noise n(iT) is a statistically correlated time series, the so-
lution of equation (2.11) is more complicated. One supposes that the spec—
tral density function of the noise n(iT) can be represented by

ay A(2) agzi4ap, 2 4o A, 2hacta, 2T 4t T +akZ
S"(Z)=N(Z>N(ZI)_Bgzg“b:z“+b;qz“4+---+b.z+bo+blz* Foor Dy 2D, T (2.15)
E(z)  epte, zte, 2+ +e zX
C(z) =~ cotC, 24C Z*+ - +Cp2™
One supposes that the function N{z) has neither zero nor pole outside the
unit eycle in the 2 plane. In this case, it can be demonstrated that the
solution of equation (2.11) is the following :

K(iT)=[Ao +A) 1T+A, (1T) ++- - +A¢ (iT)" ] exp(~aiT)+B, & +Badi4ee e +Bycdik (2.76)
In this formula A¢ Ay, - ,Ay,B, ,By, - -,B:k are the constants to be deter-
mined, and d;,d;,---,dsx are the roots of the equation

A(z)=ag 2 +ay, 2"+ 4a, z+a,+a, 214 - day, 2 M 4a, 2™ =0 (2.17)

By performing the Z-transformation one can find the iransfer function
_: o . . 4 2K B
W(z):Tﬁk(iT)z v EE&; +A, iT+A, (ATY +--- +A,.(1'I‘)r] exp(-aiT)z +Tz3 —t
A=0 =0 4= Z-d;

(2.18)

where N(2)=

The optimal estimator must satisfy the following additional
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condition: €,(11‘)=Tiég(l'I‘-—iT)h(iT)-Tg; g(AT=1iT)k(iT)= © (2.19)
Substituting the formula (2.7) into this condition one can obtain

. X -1 W
€3(1T)=%_:@Y-—m,)ii—!)— g (1T) = © (2.20)
where dp=T3=(iTPh(iT), my=TE; (1) k(iT) (2.20a)
Therefore one must satisfy the following (r+1) conditions:
BN S PN S . -
my=dy or Tg(ﬂ) k(lT)=TE°(1T) n(iT)  for 1=0,1,2,-: -,r (2.21)

In the case of prediction for a time interval ty=1,T,one can obtain
+ - * =
B(iT)=8(AT+1e 1) Thus 4 ¢ (P § (11410 T)=(-1 T for 1=0,1,2, - ,r
Therefore the (r+1) conditions are the following:
PN BN 1 . a” e
mR=T.i~:_;(1'1) k(iT)=(-1,T) for 1=0,1,2,- -+ ,r (2.22)

)
In the case of filtering one can obtain h(iT)=3(iT), dlzTF(iT)kg(iT)
Therefore the (r+1) conditions are the following: e

me=1, my=0 for 1=1,2,---,r (2.23)
In the case of estimation of the first derivative one can obtain the fol-
lowing (r+1) conditions: me=C, m,=-1, and meg=0 for 1=2,3, - -,r (2.24)

In the case of estimation of the second derivative one can obtain the fol-
lowing (r+1) conditionst me=0, m =0, m,=2, and my=0 for 1l=3,4,---,r (2.25)

2.4 Synthesis of Some Digital Recursive Estimators

Using the general method, presented in the sections 2.2 and 2.3, one can
synthesize some digital recursive estimators (predictors,filters and diffe-
rentiators). The results of synthesis are presented in the following tatle ,
where the simplified notation ©=exp(-aT) is used throughout.

Estimator Signal Noise Transfer function
type g(iT) Ra (iT) W(z)
filter g, Rpod(iT) z(1-8)
z -8
, . . (1-6*) z+26* -28
filter g,+g,1iT Rpo0(iT) z (229)‘
differen~ . . z=1)(1-8)*
tiator(1) £,+&, 1T Ryod(4T) 27 %z-eiz
. got+g, 1T + _a3y\,t_ o2 204_
filter g, (iT)? R“éziT) L L1=8 2:— 3?51 82)2z+30*(1-6)
differen— gotg, 1T + R, (i) z (2-1)1(1fe)3
tiator(2) | g, (iT)* no T2 (2- 0)3
differen— go+g, iT + . oy (z=1)[1.5(1+8)z=0.5(56+1)]
tiator(1) | g.(iT) Rd(iT) | 2(1-8) =7 (7=6)7
predictor | g,+g,iT Ry d(iT) (1-87) (141, 12} 2-26(1-8) [1+-1-1-(1..9
075 o 146 26
fOI‘ ‘tgﬂloT 7 2
(z-86)
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ITI. METHODS FOR OFPTIMAL RECURSIVE ESTIMATION OF NON-STATIONARY TIME SERIES
REFRESENTED BY STOCHASTIC MODELS WITH STATTIONARY INCREMENTS

3.1 Problem Statement

The random variations of frequency and phase of osecillators and atomic
clocks are non-stationary processes. In this paragraph one will develop the
methods for optimal recursive estimation of non-stationary time series with
stationary increments, represented by the ARIMA models or the Markov models.
1f the frequency fluctuations of atomic clocks are stationary and the fre-
quency drift is negligible, one must consider the phase (time) fluctuations
of atomic clocks as non-stationary processes with the stationary increments
of first order. If the frequency fluctuations of atomic clocks are stationa-
ry, and the frequency drift has a constant value and is not negligible, one
must consider the phase (time) fluctuations of atomic clocks as norn-stationa-
Ty processes with the stationary increments of second order. This stochastic
approach is more complicated than the deterministic approach presented in
the previous paragraph, because the statistics of random processes must te
taken into account. In order to synthesize the optimal estimators one must
have the knowledge of the signal and noise statistics., But from the view-
point of the physical phenomena in the oscillators and atomic c¢locks, the
stochastic approach is more reasonable.

In the solution of the above mentioned problem, the classical Wiener
filtering theory is not directly applicable, because it assumes that the
signal and the noise are stationary random processes. One will resolve the
problem of synthesis of digital estimators bty the method of variational cal-
culug. This is a modification and extension of the Wiener's method to the
optimization problem for the non-stationary sampled random signals with sta-
tionary increments. By this method one can determine the transfer functions
of optimal recursive digital estimators. One can also deduce the algorithms
for the realization of these digital estimators. In section 3.2 will be pre-
gsented the direct method of optimal synthesis of digital estimators. In some
cases, one can alternatively use the indirect method of synthesis. That is
to say that one will synthesize the optimal continuous estimators at f{irst.
And then one can obtain the corresponding digital estimators by the trans-
formation methods. The indirect method for synthesis of digital estimators
will be presented in section 3.3. In section 3.4 will be presented the me-
thod for optimal synthesis of digital estimators for Markov models. For the
non-stationary time series with stationary increments and for the case of
steady-state optimization, using the general theory of Kalman filtering,
one can obtain the time-invariant digital filters. And the transfer func-
tions of these digital recursive filters can be deduced.

3,2 Direct Method for Optimal Synthesis of Digital Estimators

3.2,7 General Method for Optimal Synthesis of Digital Estimators

One assumes that the time series is represented by y(iT)=u(iT)+n(iT)
where T is the sampling period, u(iT) is a non-stationary signal with sta-
tionary increment of m~th order, n(iT) is a stationary noise. One can re-
present the protlem of optimal estimation by the following diagram.
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Fig, 3.1

where W(iT) is the impulse response of a real estimator, which is a linear
congtant system, I(iT) is the irpulse response of the ideal estimator. COne
wishes to minimize the mean-square error

=gfe* (L T)] = € [v: (i1)~2y, (AT)y(iT)+y* (1T)] (3.2.1)
By performing the Z-transformation one can obtain
Yy (2)=U(z ;1( % Y(z)=[U(z)+N(2)]w(z)
E(z)= U(z [U(2)+X(2)] W(2)=0(2)[1(2)-W(z)] =W (2)N(2) (3.2.2)

Because u(iT) is a non—qfatlonary signal with stationary increment of m-th
order, one obtains U( )ﬁ ﬂ )m (5'2.3)

where D(z) is a statlonaly +1me series. Thus one can obtain
D(z ' y” .
E(2) = 2eelE (2)-W ()] -W(2) N(2) (3.2.4)

If one assumes no correlation between signal and noise, then
San (2)= 0, Spa(z)= 0. The expected value of E(z)E(z™ ) becomes

E»E(Z)E(Zl ) Suz(d)— & Z w1 (2)-W(z) I(zﬂ)~W(z4) +W(z)W(z*)SH“(z}
()50 e (il (4 [ ] o

This expression gives the spetral density of the error in terms of the spec-

tral density of the derivative of the signal and the spectral density of the

noise. One uses the formula of inversion to obtain the mean-square error as
1

s;z_.g_ﬁti.ﬁ] See ()27 dz (3.2.6)

One will derive the equation for the best W(z), which minimizes the mean-

square error 6g° . By using the following short notations

W(z)=Wy, W(zt =W, I(2)=l, I(z")=I. (3.2.7)
one obtaing
-mé {_de Z)(1 z"‘) (u--z) (L N+)<i —W_ )+bm(z)w W} (3.2.8)

By the ruleq of variational calculus, to determine the minimum of 6 one must
give a variation AN(z) to the transfer function W(z) and find the quantity
@;{W+Aq}. In this case the pptimal transfer function is determined from

ﬁ%rsg{W+AQﬂbﬂ =0. In this way one can obtain 61{W+AQ}m

: fasled 8 - )+ Z + +
'ﬁﬂ{ﬁ-zﬂmmﬁ‘“ Wy =8, ) (T =81 )8y () (W +1,) (W +a1)} 2

2nj 5 5. 9)

-1 G{WML}L 0 “J ém— {'(-TE\T?"" (1 z-? (1= ) (ST 1) (1] +
+ Spn (2) (WL 4+ 70} 2t dz =0 (3.2.10)
This may be written as the sum of two integrals :

5%3-‘ﬂﬂ T{_{SM(z)(1—-z")_mW«--z)me(Wg,-—:[iﬂ)+f3,m(z)WJr}z“i dz+

2“3 u||‘1{*‘ (z)(1-2" ) (1“z-m (W -I.)+Smn ( Z)w} z' dz = 0 (3.2.11)

If, in the second integral, one makes the change of variable z=-%
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and uses the evenness property of S, (z) and S,y (z), one can show that the
two integrals are identical. Thus one obtains

-m -
A7 P U= HBaa (2 (12 T (1= [ (2)-1(2)] 48 (2)W(2)} 2 2= 0 (3.2.12)
Now one defines the spectral factorization as following
Saa (2)(1=27) Y™ (1-2)™ +8un (2)= A(2) A(2) (3.2.13)
and requires that‘A(z) has poles and zeyros inside the unit circle only, and
that A(z™' ) has poles and zeros outside the unit circle only.

Using the notation [(2z)=S4 (z)(1-z7 Y™ (1-2)™ 1(z) (3.2.14)
ore obtains _—M 7P, =™ az Y [W(z) A (2)- —E—)—‘Z o )]z" dz= O (3.2.15)

Expanding the term F(z)/A(z' ) in partial fractions, one obtains

r(z rlz rlz
where [g :_, ]+ has the poles inside the uniticircle, and [Z :_, _ has
the poles outside the unit circle.
Thus 1 -1 — 'l‘(z) 1 (2 = _
——562” o W2 A2 ){W(Z)A(z)—-a(z_,)L—_A 2) -}z dz=0 (3.2.17)

Note that §(z" )A(z*)[r(z)/A(z"IL has the poles outside the unit circle

onl then one obtains 1 N axfcl=z -
¥ Eﬁ(ﬁmz‘ 1(z" )a(z" )_-;%;2.—)}_2' dz= O (3.2.18)

Thus the requirement of realizability of the optimal estimator becomes

=h NG )W) A()-[r(2)/a (20 ) }e a2 = 0 (3.2.19)

2w /i
from which one obtains 1 [r(e) ]
W(Z)" AKZSLA(Z-l)..f

3.2.2, Synthesis of some digital recursive estimators

Using the general method, presented in the section 3.2.1 , one can syn-
thesize some digital recursive estimators for the non-stationary time se-
ries with stationary increments of m-th order. The results of synthesis of
the digital recursive estimators can be represented in the following table.

Saa (z s (z)| 1(z) Transfer function Paremeters ARTINA
1=z Y 1=z V| W(z) values (pna)
4z 2 3
o) (1-z) | ¢ | 1 e r'=1+%—c;-’(1+g?)1—1 (010)
- i
a2 (21, =7, ) 247, 7, 1 Yy =2+jd/c, (020)
(1=zY{(1=z ]| o* 1 (21, )(2-1) Ya=2-jd/c,
; . r, =0.5y, ~J0- 25y 1
d ot 1-2 2 (2“1)(1-1’1 )(1"'1'1) ' ((wzo)
(1=-2" Y(1=z T T (z—r.)(z—rzj Iﬁzo‘sx'116?§g§5:q J
—a* c? (1—2111 Z(z_.‘)z (1=x, )(1=r. )(1=xs )| 7 yx, and ry are (030)
(1-27Y(1-2) T2 T* (z-1, )(2z-1.)(2-r3)| the roote of equa- /
d* 2 1=2" | (2=1)(2+68) (1-1) (=) (11 1(;;2?)6 I S (030)
(1-z)¥(1-2) ° T T(1+8) (2-1) (-T2 ) (2-73 inside tﬁz u;it
d* ot 1 (2! +02+0, ) (1-r) (1-1) (1-1)| cycle. ' ,8,and 6,|(030)
1=z ¥(1-2 (1+6+6,) (z~r, )(2-rs ) (2z-r; )| are constants
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3.3 Indirect Method for Optimal Synthesis of Digital Estimators

In some cases, the synthesis of optimal digital estimators is more diffi-
cult than the synthesis of corresponding optimal continuous estimators, be-
cause the algebraic procedure of spectral factorization is more cumbersome.
One can alternatively use the indirect method of optimal synthesis. At first
one will synthesize optimal contimuous estimators. Then one can obtain the
corresponding digital estimators by transformation methods.

3.3.1 General Method for Optimal Synthesis of Continuovs Egtimators

One defines u(t) as the signal and n(t) as the additive noise. One can

r?present the problem of optimal estimation by the following diagram.
W(t) is the impulse response of a n(t
reaz estimator, I(t) is the impulse u(t) zL ‘ y(1) e(t)
response of an ideal estimator. The
criterion of optimization is the
mean-square error 6';._8[8 (t)]
By performing the Laplace transformation one can ottain

"B()=0(2) [1(s)-(s)]-(s)n(s) (3.3.1)
Because u(t) is a non-stationary signal with a stationary increment of m-th
order, one obtains U(s)=D(s)/s™ , where D(s) is a stationary signal. One
assumes that the Spectral densities Sy, (s)=Snq(s)=0, then the expected
value of E(s)E(-s) 1

E[5(2)E(-2)] =Ses (2)= 4R (a)-(a)] [ T(-8)-U(-5)] 44(2)(-)5py () (3.3.2)

The mean-square error is 6 2;3 j"‘” See (s)ds (3.3.3)

Fig, 3.2

By the rules of variational calculus one can obtain

o [ Moo {5 (8)8™(-6)" [W(5)-1(5] 450 (s)0()} o0 (3.3.0)

Now one defines spectral factorization as the following

5 5
Sl 4 5, ()= A(e) A5 (3.3.5)
and requires that O (s) has poles and zeros inside the left half-plane(LHP)
only, and A(-s) has poles and zeros inside the right half-plane (RHP) only.

Then one obtains 2“. J?:q( S)A(-S)[W( ) A(s)- -E%§lj]ds_ 0 (3.3.6)

where [*(s)=S4 (s )s‘“(-s) I1(s). Expanding the term [(s)/ A(-s) in partial
fractions, one obtains [(s) [[(s (s

AD(-s) [a(-s)]s A(~s (3.3.7)
where [r(s)/a( s)],,_ has the poles inside the LHP only, and [['(s)/A( s)]
has the poles inside the RHFP only. Notlng that

1 ;oo _

5 o (-8) A(-s) [F(s)/ & (=s)) ds = (3.3.8)
one can obtaln the transfer function of optimal contimuous estimator

(s
)= 5155 [ ey, (3:3:9
3.3.2 Synthesis of Some Optimal Continuous Estimators

Using the general method, presented in the section 3.3.1, one can syn-
thesize some optimal continuous estimators ( predictors, filters and diffe-
rentiators). The results of synthesis are presented in the following table.
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ARIMA S s .
(pnq) mLstm 7 [Sna(2)] 1(s) W(s) Parameter values
d? s q, 8+1 e (6% drvak
A T rs = - . - — — e —
(110) s(-s) (~5+6) © - (ab)' & (a+b)(ab) s+1 mlﬁm+ha V g &1)
d? ks 6 et d*\%1z
(110) s(=s) (=40 c* | se™ | (ab) & (a+b)(ab) s+l Ui_wl iAﬁliv U_ (+2)
2 s AL.N._H_n +.ﬁ‘vm+\~
¢ © Tes® +/2Te 5+1 Te=je/d
2 _\,u,._iii i
¢ ° Aemm» +V2Te 541 . =/o/d
. vs | (2T 42T € +1) % (2T ) s+1 3
(030) (=¥ §? © © T3S 1010 & 42Te 54 Te=Jc/d
2 s s [(2T. +t)s+1] 3
C se T8 4002 5% 42T% 5471 T, = O\Q
c? | s? 52 T, ="fc/d
T s? +27¢ 8* +27T s+1 e=J°
d?(-5%+%%) i q, 541 m_u\ma /c+6* +d* /c?
(111) s(=s) (—+69 c? e als® +a, al g+ a:= difc , (%3
dz Am.m +ﬁvm+g a,=d§/c
‘a, s*+a, aj g+ m.lximw\o + ap\oN
1
enmﬂ%! 4\\ Anlwv
T e(er)
(*2) k= {(ab)'6*+(a+b)(ab)' 6 +1
_ 1, 2 (885" )exp(-6T)
®3) q=7g+ $6(0 +a, 6+a, )

3.%3.% Calculation of digital estimators by methods of transformation

One has obtained transfer functions of continuous estimators. By the
method of Z~transformation or the state variables method one can determine
the transfer functions of corresponding digital estimators, which are neces-—
sary for the realizations or for cowputer solutions. One will explain the
state variables method only. Y

Oden ﬁwm transfer function of a continuous estimator iﬂmvu.mmmw.a
Uem +U.—i_ g +..-+b; 8 +he I
a,8P+a,, sF 4. 44,5 +a. where qs p- (5.3.10)
one can find a differential equation of order p . Then one can represent the
continuous estimator by & set of first order differential equations, called
state variavles equations. X(t)= ®X(t)+ 6U(t) .

(3.3.11)
Y(t)= CX(t)+ DU(t)
where ¥,G,C and D are matrices, A(t), ¥(t), U(t) and Y(t) are vectors. Then
for the corresponding discret estimator, one can determine the state tran-
sition matrix @ and the input matrix §~ by the following formulass

p=exp(FT) , = ¢(p)Gdp (3.3.12)
Thus for the discret estimator one can obtain the following state variables
equations + Xy =P Xx+ [ Ukn (3.5.13)

Mx =C X_A+ D Uk
These equations give the algorithms of digital estimator. They are natural
and convenient for computer solutions of problems. In order to analyse the
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digital estimator, one can perform the Z-transformation of these equations.
one obtains X(z)=(2I-¢ )" 20(z)

Y(2)=C X(2)+ D U(2)=[C(2I-¢ )" r z+D] U(z)
Therefore the transfer function of the digital estimator is

’ -l
W(2)=¥(2)[U(2)] =C(zI- ¢ )rz+ D (3.3.14)
On§ will illustrate this method by two simple examples.
(1) -The continuous estimator is _X(s) 1
O O (3315

Thus i(t):—%x(tﬁ%‘:u(t) y y(£)=x(t).

One obtains F=-1/Tc , G=1/Tc, @=exp(Pr)=exp(-T/T.),
r=1-exp(-1/T. ), C=1, D=0, The transfer function of the digital estimator

- 1- - c
18 y(2)= C(21-¢)'rz+ D=z z_:;g%_gégc% (3.3.16)
(2) The continuous estimator is .W(s)= %%:))‘Tg E‘T;:T: e (3.3.17)
One obtains the state equations X(t)= F X(t§+ G U(t (3.3.18)
-t Y(t)= C x(t)+ D U(t 543+
where X, (t 0 1 0
on (505 e ) S[o, o 0

The state equations for digital estimator are
KXo =@ Xt I Upt
Yk =C Xx+D Ux
where Xk X e (cosd +sind ) V2T ™ sind
Ky= [ix], X”=[. ]- $= )]

(3.3.19)

Kt V2T e*gind e~*(cosd ~sind
raflzet(sindscoBd N o (1 mr Y Do Ueeu, Yesye, o=T/(VETC )
VZ. 1 e* sind . ¢ /)y UFUy Un=Uky k=Y y A= c
The transfer function of [the ;I:Egital estilsl]ator is «( )
-1 1+ (gind—cosa )] z4+4e**—e ™ (sind +cosd
W(z)=C(2I-¢) rz+ D= z S TreSooni T T
Using this method, one can resolve more complicated problems.

3.4 Optimal Syntheeis of Digital Estimators for Markov Models

(3.3.20)

For the optimal estimation of non-stationary time series, represented
by Markov models, one can use the Kalman filtering theory. In general, one
obtaine digital estimators with time-varying parameters, which are diffi-
cult to realize in applications. For the cases of non-stationary time series
with stationary increments, and for the cases of steady~state optimization,
one can obtain digital estimators with time-invariant parameters, which are
eagy to realize in applications. One will at first summarize the basic re-
sults of Kalman filtering theory, and then develop some aspects of applica-
tion to the estimation problems of non-stationary time series with stacion-
ary increments.

3.4.1 Basic Formulas of Optimal Filtering for the Case of White Noise [17]

One supposes that the state equations of the model are the following
X +x W
‘=¢b“" XH K WK . (3-4.1)
Ye= HK Xk + Vx .
where Wx and Vk are zero mean white noises, so that EWg=0, EVx=0,
Cov(WxsWs )= Qxdy 5 Cov(Vi,Vj )= Ry , Cov(Wy,V; )= O.
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Then the linear optimal estimation ik for the time series Xk can be deter-
mined by the following recursive formula :

Xe= ¢km|§wl+ KK(YK—HK¢MK4%Kﬂ ) (3.4.2)
The gain matrix is Kk=Peje HE (Hy Pujer ot R ) (3.4.3)
The a priori variance is Pi/i=Pyus Pud Poxa Mt Qe iy (3.4.4)
The posterior variance is Py={T-KHq)Puy (I-KcHe ) +K( RuKk (%.4.5)
The estimation error is ‘?W%4= Yi—Hk P, -1 Kk (3.4.6)

In general, the matrices P« i, M« y Hey Qk, Rxy Kk, Pyi+ and Px depend on k,
so that one obtains time-varying estimators. But for non-stationary time
series with stationary increments, one can have the matrices ¢, I, H, Q and
R, which are independent of k. For ease of implementation, one will focus
the main attention on the optimization for the steady state, but not for
the transient state. In this case, one can obtain the matrices X, P and P,
which are independent of k. Therefore, one can obtain suboptimal estimators
with time-invariant parameters, expressed by the following equations :

Xp=@ Xy +7 We ,  Ye= HXk+Vk (3.4.12)
EWc=0, EVk=0, Cov(Wx,W;)=Qb5x » Cov(Vk,V; Y=R %, Cov(Wk,V;)=0

The estimator equation is Xk=9 X +K(Yk-H® X ) (3.4.2a)
The gain matrix is KeP' H®(HF' " 4R)" (3.4.%a)
The a priori variance is P=0PP°+rQre (3.4.42)
The posterior variance is P=(I-KH)P* (I-KH) +KRK" (3.4.5a)
The estimation error is Yt =Yg~ H$ ;o (3.4.6a)

By performing the Z-transformation, one can determine transfer functions of
the time-invariant estimators. One obtains

X(2)=(zI- )" 2W(2), Y(2)=H(2I-$)'F 2W(2)+¥(z) (3.4.7)
R(2)=(z1-9 )" Kz¥(z), Y(z)=HP z'X(2)=H (21-¢ ) K[¥(2)-¥(2)] (3.4.8)
Thus the transfer function of the digital estimator is
A(z):?(z)[*f(z)]"=[1+H¢>(zI-cp)"K]"Hcp(zI-qa)"K (3.4.9)
The open loop transfer function of the digital filter is

B(z)= HP(21-8) k= ¥(2)/¥(2) (3.4.10)

2.4.2 Method for Solution of Optimal Filtering Problems for the Case
of Coloured Perturbation

According to the definition, the ARIMA(p,n,q) time series corresponds
to a continuous process, expressed by the following state variables equa-
tions : X(t)= F X(t) + G L(t) 11

Y(tgz HX(t) + V(t) (3.4.17)
where

010--0 0 X.(t; k.(tg
001--0 0 t . >

Fedom oo G=1o *(%)= x‘.( X(t)= x’,(t H=(1 0 0---0)
000--0), 1], xn(t)) )'c,‘(t) ,

L(t) is a coloured perturbation, V(t) is a white noise. One supposes that
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L(s)=M(s)W(s), where M(s)=N(s)/D(s), W(t) is a white perturbation. If all
roots of the equation D(s)=0 are real and different, the state equations for

the coloured perturbation L(t) become P(t)=A P(t)+B W(t) ( 12
L(t)=C P(t 3.4.12)
vhere €, 1
6, O :
A= B=1 . C=(C, Ca v * CP)

O e i
| d ¥ ’
One can associate the state equations for L(t) to the state equations of the
model. One obtains [X(t)) (F GC) {X(%t) ]
[@(tg]—[o A] [P(t) + [B W(t) (304013)
One supposes that p'(t)-_-xnﬂ(t),- -, pP(‘t)zxm‘,(t), x* (t) [ (tg]

s 7).

Then the e;}ended state equations are the following :

X*(t)= F(t)+GW(t) * (P GC x (0

Y*(tg EHX()+ v(t), " F=lo 2, “=s (5.4.14)
By the methods of matrix calculus one can determine ¢"9XP(F T) and

r f ¢KW)G d? Therefore the extended discrete state equations are the
following t Xw" = ¢" XK Y "
YK = H XK + VK (304015)
Then one can use the basic formulas of section %3.4.1 for resolve the optimal
filtering problems for the process model, expressed by the extended discrete
state equations.
3.4.% Caleculation of Some Digital Recursive Filters

Using the general methods presented in sections 3%.4.1 and 3.4.2, One can
design some digital recursive filters. The results are presented in the fol-
lowing table.

ARIMA X(tngX(t)+Gw(t) Xe=¢ Xt I Wk x | Trensfer function Coeff,
(png)| Y(t)=HX(t)+ V()| Yu=H X¢+ V A(z) of €
- - - - a C°=O
(010)] F=0, G=1, H=1 |¢=1, [ =T, H=1 a | —r Ny
0 (1T Co =0
(020)| F [ ] Gm[] ¢—k 1], %ﬂ? (a+b)z—a ¢, =0
H=(1 . = [‘1"'/2] z2+(a+b-2)z+1-a ¢, =27 /b
T ), where a=-b/2+[2b
H= (1 0)
(110)| g0 1 (0] |4t 1) | (a+ N b)z-als ¢o =0
=lo o, &=1],|9=lo ool | E (- 1-Rzt-0G n)
H=(" O) r_='9" [6(€7-1)-1] where f=(6T)" (% -1) k= %—V‘
{ e (e __1) R= EXP(QT)
H=(1 0)
(030) 010 0 (1 T T/2 a q, 2° +q, 244, ce =0
F={0 0 1| G= ¢=j0 1 T b/T | 234p, 2°+p, z+D, ¢, =0
0 0 0}, o 0 1 , [2¢/T*| where g,=a+b+c, = 0
H=(1 0 0). T*/6 Qo=8, D,=a+btc~3, 31/
re=|12/2 D, ==2awbic43, ¢y =3T"/c
T b q, =~2a-b+c, p,==1+a.
Ha=(1 0 0) ' T




IV. APPLICATICONS OF DIGITAL RECURSIVE ESTIMATORS TO ATOMIC TIME AND
FREQUENCY METROLOGY

In this paragraph, one will demonstrate the applications of digital re-
cursive estimators to characterize the frequency instabilities of atomic
¢clocks, to predict the random variations of atomic time scales, and to smooth
time series data, cobtained by the comparisons of atomic clocks.

4.1 Characterization of Frequency Instabilities of Atomic Clocks by Recur~
sive Digital Differentiators

4.1,1 Estimation of Variance 6}2 by Using Recursive Digital Differentiators

For the characterization of frequency instabilities, phase comparison
data of atomic clocks will be used. For the determination of the first de-
rivative of phase fluctuations, one can use the digital differentiator

W, (2)= = (21} (1omy ) (1ory ) = i W (z), where WL(Z)=Z(1‘r‘)(1-rZ) (4.1.1)

T (z-r )(z=r;) = T (z-1, )(2-r2)
The corresponding continuous differentiator is
8 1
W, (s)= T /T e =sW, (s), where W _(s)= T 47 Tooy | (4.1.2)

For the determination of the second derivative of phase fluctuations, one
can use the digital differentiator
(2=1) (1—r, Y(1=r, ) (1=r3) (z2-1)

W)= e e e Y o)™ e e (2) (4.1.3)

, 2(1-r‘)(‘~rz)(1~ra)
where W, (2)= R | CRee | Ccey
pass filter. The corresponding continuous differentiator is

8 2 1

Wy ()= Teg®+2T e o, s+l o Wi (s), where WL(S)"T§S3+2TQS’+2E;S+ 1 (4.1.4)
Therefore the transfer functione of optimal differentiators are composed by
two operations: pure differentiation and low-pass filtering. The correspon-
ding low-pass filters are the Putterworth filters, which are the approxima-
tions to the ideal low-pasgs filter within the pass-band uk=1/Tc .
From the time series y; obtained at the output of the digital differentiator
W, (2), one can determine the mean value and the variance by the following

ass 1 1 N 2
formulas N (y. —m,) (4.1.5)

2z
':TF%E:yi’ GQmﬁ:T;;;

For each value of the parameter T¢ one can obtain a value of the variance
§,* . By changing the parameter T., one cvan determine the curve of variance
function 6y(T ). When the parameter T: increases, the variance 6, decreases,
From the curve Oy (T.) one can obtain the curve 6(wW.) by a simple computa-
tion. The curves 6}(Tc) give the frequency_ instability characterization in
the time domain.( see Appendices, Fig. Al ).

From the time series d; obtained at the output of the digital differen~
tiator W,(z), one can determine the mean value and the variance by the fol-

i . N
lowing formulas: md='%r22:di , :_ N 1 (d mdf (4.1.6)

: i=l
The values of my and 6§} give the frequency drift characterization of oscil-
lators.
4.1.2 Piltering Method for the Power Spectral Density Determination

is the transfer function of a digital low-
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One supposes that there iz & rve of “he power spectral density Sy(w).

ral f tion B, {107 can be det ined b
The spectral function v,Sr; w1 he g :TWJI&O y ¥, \u))m Qg (w )dw
And the variance is @1 & lm'%uunwnwF (us“w_m (4.1.7)
e can obtain also g -
On o] in © g (L" }:_n (4.1.8)

Therefore Fy(w ) is the primitive function of Sy{w ), and §y(w) is the

¥ E _ ‘ o $\ 9 AN
first derivative of Yy\L03, Tre value »f #,{w ) for w=co is the total vari-
ance 6&. The valus of Ty o0 o e e v partias variances

Fy(u)) S S (fU\dubwﬂ 67\(0 ) ryroln the curve 69(15) one can determine the
curve GZ(uk). Then one can compute the svectral function Iy (W)= “15(0%}
for different values of W. . The power spectral density Dy(ub) can be obtai-
ned by the differentiation of the curve }y((oﬁ 8

AF, (W) Fy(ws)-F, (Wi
s (W)= Y i/ XA A 1.
7( “') A U\).{ w{ - RO‘L-! (4 9)

A.1.% Relations to the Convenvionai (Characterization Methods

It ie of interest t¢ cempare the proposed characterization method with
the conventional methods, sspecizlily with the Allan-variance method and the
three samplesg variance method. Ir h tion, scomz comparisons between
these methods are given.

(1) Comparison with the Allan-variance method
Accordlng to the definitiorn of the Allan variance cne obtains(gee [8])

[N
ol

z P Do e s
— \ gaNE:A . Sn—_‘w'_'—.- RV s |
6 (2,C,m)= = \(;yz Y, ¥« Thus §,{c) J?(yl v (4.1.10)

LT
where y,———f“t (e)de y Y, m_L" yie)de, and t,=t, +1

inafer function
ein'Ury

1 T8 ¥ <
H(s )= = 1 © 1 1{/\\ J— el
(=) Vets ( J |1( VT
According Fo the Padé aporoximaiivn one can ohmain | zee 16} )
~ts  Jesr/2 o TS
e = o so that 1- e
1+8tT/2,
Thus the approximate transfer farmotins

1 -T$ 1 T g
(1. g ool [ witere 45 e ey .
H(S) J?'Cs( e )2 d"t’ H.m. KR ! [ AN “(’1‘-32/’1 g4 1 N (4 1013)
The equivalent pess-band of the low-pags Iilter Hy(s) is fém1/(4ti)
For the optimal continucus differentiator

Hence one obtains the following Ty

where s=jw =32 (4.1.11)

2

(4.1.12)

Allsr variance method is

. 4
oy 4 I wh o W ls Y - ! : .
Wz(S)— Tzsz+Jﬁ'qu 21 W sty wher Wyl TR LT, 3 (4.1 14>

s
the equivalent pass-band of the low-pass filter Wi(s) is fo=(4V2 T¢)
Therefore the condition of equivaiemce g T=idly or =T (4.1.15)

(2) Comparison with the three SEUOE variance method

According to the defirition variance method [a]one

obtains . e —_—
0,(3, T, T )=z~ ¥ Lev ey, ) (4.1.16)
g :
The transfer functlon of >tf
1 05 43 . s,
H(s)= 55 (1= e ), B m}i (4.1.17)
Using the Fade apprcxjmafjon - - ?weww‘*wwg'ig“?" (4.1.18)

o
s

one can obtain the approximate transfer function of is method
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H(8)=‘3%g(1~ e"tsjkr%rt’s’HL(s), where H, (s)= ! (4.1.19)

(ce/2+ 1)

The equivalent pass-band of the low-pass filter H,(s) is fi=3/(16T)
For the optimal contimumous differentiator

_ 52 o2 1
W (s )_T3s 2T g2 42T 841 W.(s), where W, (s)= T2 8* +2Tc 8" +2T, 541 (4.1.20)
the equivalent pass-band of the low-pass filter W, (s) is fe= (GT;)
Therefore the condition of equivalence is1:=“%_ . or Tk=‘%}t (4.1.21)
4.2 Prediction of Random Variations of Atomic Time Scales by Digital

Recursive predictors

4.2.17 OStatement of the Atomic Time Scale Prediction Problem

The time scale prediction problem is one of practical importance in such
areas as utilization of portable clock data, control of time and frequency
at remote autonomous stations, and atomic time scale formation with extrapo-
lation. Several prediction methods have been proposed. They fall into two
general classes: fixed polynomial filter methods and autoregressive integra-
ted moving average (ARIMA) methods. By these methods, some results of predic-
tion of atomic time scales have been obtained.[9] [11],

But there are three main problems in prediction, which have not been re-
solved. (1) The fixed polynomial filter method by the least-squares is not
a recursive method. Thus it is not applicable for real-time data processing.
(2) According to the ARIMA prediction method of Box and Jenkins, the addi-
tive measurement noise is not taken into account. (3) By these two methods
one cannot make the prediction of derivatives of time series data. There-
fore they are not applicable to the frequency prediction problem.

To resolve the above mentioned problems, one will use digital recursive
predictors for atomic time and frequency prediction. Hence the additive mea-
surement noise can be taken into account, and one can predict time and fre-
quency variations simultaneously.

4.2,2 Realization of Digital Recursive Polynomial Predictors with
Exponential Weighting of Data

The transfer function of polynomial predictor of second degree is

W(z) 2l X(2)  (1-6*) [+ (1-0) (1+6)"] -268(1-6) [1+1. (1-6) (26)"] 2™ (4.2.1)
= Y(z) 1= 2027 + 6% z°2 ter

Thus the algorithm of this predictor is the following :

Xn42o= 26X agget =0 Xmagemz +(1-6" )(1+101 )y“ -26(1 e)(1+1,, % )y,H (4.2.2)

where the prediction time is {,=1,T , T is the sampling period.
The transfer function of polynomial predictor of third degree is
W(z)= 29X (2)  AaT4+0(~2A,T+A; T*+A, T3 )z +6% (A, T-A, T*+4,T3) 22 (4.2.3)
T Y(z) T P ?9 z;5_3 ?2 '2); 03z73 ter
where _ 3 31, (1-6 13 (1-0 1 2 2 [
A,T=(1-0 )[1+2(1+9+91) 2(170+6771, AT _--2( 1-8)" (1+8) |1+
. 1“(1—'9)(99-”) zg_e) (3e+1)] A= (1-@)31'1+1 (3e+1)(1 e), z(1-e)1
662 662(1+0) . ° 20 Lo 20*
The algorithm of this predictor is the following !

=36, | =30 Xpy, 5+ Xy s (Ao T)y, +0(-28, T+A T 4+4, T% )y, 467 (Ao T-A, T*+

X
nlo
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ATy, (4.2.4)
4.2.3 Realization of Digital Recursive Predictors Based on Stochastic
Models with Stationary Increments

In the paragraph III the synthesis of optimal predictors for several mod-
els has been done by the indirect method. At first, the transfer functions
for continuous predictors have been obtained. Then one must use the Z-trans-
formation method or the state variables method in order to obtain the cor-
responding digital recursive predictors.

For the model ARIMA(0,2,0), the optimal contimuous predictor is

c+L

w(s)= ngj'zjﬁrzz: 1 where Te=[c/d (4.2.5)
For the model ARIMA(0,3,0), the optimal continuous predictor is

2 2 Is 3
(o)L R R I L nere 1T (4.2.6)
For the model ARIMA(O,B,O), the optimal continuous predictor of first deriv-

Tésfcngagzgi ;TQl + 1 where T.=/c/d (4.2.7)
In order to demonstrate the digital realization method of continuous predic-
tors, one will transform a continuovs predictor of second degree by using
the state variables method. For a given transfer function (4.2.5) one can
determine the following state equations: X(t)=FX(t)+GU(t) ,

(4.2.8)
Y(+)=CX(t)+DU(t)

where X(t):[i;%:% ’ p (t)=[§;gzgl, Fx[_gf “J%Eﬂy G=[O ]’ Cm[1 (Jﬁﬁ2+tﬂ ’

T
D=0. One dESlgHatQS VK JKT, VK-H =XK+| T and dﬂT/ (JETC ) .
state variables equations for the digital predictor are the following :

=P Xk + 1 Uks -
=C Xg +D U« (4.2.9)

x x
where Xp= vk XH,:[v”'
K K4}

_le™*(cosa+sina ) e *sind
, ¢= -2 e"*gind e *(cose ~sind) ,

1-e~% (sind +cosd ) _ a4
r=[ S ]' c_[1 (o(+f/'1‘)] , D=0.

4.3 Approximation of Non-stationary Time Series Data by Digital Recursive
Filters

4.%.1 Statement of the Approximation Problem of Non-stationary Time
Series Data

In atomic time and frequency metirology, especially for the time compari-
son between distant atomic clocks by satellite, one often has necessity to
solve the approximation or smoothing problem of time series data. Conven—
tionally, one can use the least-squares method of approximation by algebraic
polynomiale. In order to simplify the algorithm of computation, cne can use
the least~squares method of approximation by orthogonal polynomials (Legen-
dre polynomials). In this case, one can save the operation of matrix inver-
sion in the determination of coefficients of polynomials, But these least-
squares methods are essentially batch-wise processing methods. They are not
well suited for real—time digital processing of time series data.

For the processing of non-stationary time series of long duration and
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for real-time processing, one must use digital recursive filtering methods.
When one compares two distant atomic clocks by a satellite, there are no
knowledges of the statistics of the process. In this case, one can use digi-
tal recursive polynomial filtering with exponential weighting for the data
approximation or smoothing.

4.3.2 Time Series Approximation by Digital Recursive Polynomial Filtering
with Exponential Weighting of Data

Using the results, obtained in paragraph II, one can solve the problem
of non-stationary time series approximation by digital recursive polynomial
filtering. One will demonstrate this application by two simple examples.

(1) For the smoothing of stationary time series data, one can use the digital
recursive polynomial filter of first degree. The transfer function of this

filter is X(z 1-6 1-6

w(z)= Y(z) = *Tz-6 - -6z (4.3.1)
Thus the algorithm of realization of this filter is the following @
Xp= 6x,, +(1-0)y, or Xp=x,,+(1-8) e, , where e,=y, -Xpy (4.%.2)

(2) If the time series data contain linear deterministic component, one must
use the digital recursive polynomial filter of second degree. The transfer
function of thisg filter is

_ X(z) _(1-8*)z+2e(6-1)  (1-0*)+28(e-1)z2"
W(z)=2y == —(sop =262 40772 (4.5.3)
The algorithm of realization of this digital filter is
Xy =20%p, —-0%x,,+(1-6%)y, +26(6-1)y,, (4.%.4)

One can also use another algorithm for realization of this digital filter,
expressed by the following matrix equation 3

11 " -3
[XWF[O 1] [$"]+[21_9)1]9“+\ [] where em‘ =¥ny ~Xn=Va (4.3.5)

Vi
Using this method, one can solve more complicated problems by the same pro-
cedure.,

V. NON-STATTONARY TIME SERIES MODELIZATION BY DIGITAL RECURSIVE METHODS
5.1 Problem Statement

The problem of atomic time and frequency modelization has a fundamental
importance for theoretical and experimental studies. The conventlonal method
for modelization of the statistics of frequency fluctuations is based on
stationary models. The commonly used model of frequency instabilities is the
power-law spectral density model, expressed by the following formulas:

2 o
Sy(£)=3_hyf” for Of=fy and 8§, (f)=0 for f£>f; (5.1.1)
Bagsed on this model, the phase fluctuations can be expressed by the follow-
ing model: Sx(£)= (4m2e*)”! sy (f) (5.1.2)

The second widely used model is the deterministic polynomial model. When
there is a linear frequency drift, expressed by a first-order polynomial
model, the phase drift can be modeled by a second order polynomial.
The third proposed method for modelization of frequency and phase fluctua-
tions is the ARIMA stochastic models. These models can be used for the mod-
elization of non-stationary time series with stationary increments,

But there are some problems in modelization of atomic clocks, which have
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not been resolved completely.(1) The power-law spectral density models are
not completely suited for modelization of non-stationary frequency and phase
fluctuations. And the procedures of modelization are not natural and conve-
nient for computer simulations. (2) The deterministic polynomial models can
not reflect the statistics of frequency and phase random fluctuations. (3)
The ARIMA models have been constructed by empirical methods. The physical
origins of different ARIMA models have not been explained and derived. The
ARIMA representations of models can be further modified in order to get the
Markov representations, which are more natural and convenient for computer
solutions and simulations.

In the section 9.2 one will analyze the internal noises of atomic clocks
in order to interpret the physical origins of different ARIMA models. Then
some theoretical Markov models can be deduced. In the section 5.3, analyti-~
cal procedures of spectral approximation and model identification will be
proposed.

5.2 Analysis of Internal Noises and Deduction of Theoretical Models
for Atomic Clocks

5.2.1 Analysis of Internal Noises of Atomic Clocks

Consider the system block diagram of a cesium atomic clock, shown in the
followi fi e. )
ollowing figur T _m%\8>+‘P"(Sl

3(s)

Ky /S zl Jii;“) -] k
FY(S)‘.H__MI_—D(J e FD(S)”Q(S)E_"EG
fr(S) Ml

Tfn\(s)

L3 Fig. 5.1

One supposes that the noise of the oscillator fg(t), the noise of the fre-
quency multiplier fp(t), and the noise of the atomic reference f\(t)are un-
correlated. Then the random variations of the frequency of the atomic clock
is determined by the following formula :

k.kz =] k| ka
fo(s)=fr (S) 5+K; Kz K3 +f$ (S)h§+k|kzk3 -t (s)-Suk|E;k3 (5'2'1)
The random variations of the phase of the atomic clock is determined by the

fOllOWing formula : “PO(S)“-'-‘-" fo(S)%“‘ g(s) (5.2.2)

Using these general formulas, one can analyze frequency and phase fluctua-
tions for different cases of noises f((s), fq(s) and fm(s). And then one can
obtain different theoretical mcdels for atomic clocks. The results of some
theoretical analysis can be represented in the following table.

ARIMA
(Pyn,Q)

(1,1,1)

Noise .

el ENOI ENOEHETE) A P.(s)

White b(s+r¥'k, ks ) bky (s+rt'k, ks )
S+k| kz k; S(S‘Fk‘ kz kg)

noises
Random r/s b/s 0 b s+rblk, ka ) bk4(s+rﬁ*k|kz)
s(s+k, ko k3) s2 (s+k, ky k3 )

T b 0

(1,2,1)

walks
¥req. d dkg

(1,2,0)

drift

s(s+k, k, k)

s?(s+k, kKak3)

W.N.+
l;‘.DI

bs? 4Tk kag+d

s(s+k,kzk3)

bs?+rk; kas+d

k‘s“(s+k,kzk3)

(1,2,2)
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5«2.2 Deduction of Markov Models for Atomic Clocks

All formulas, which express the theoretical models of atomic clocks, can
be represented by Markov models. Using state variables method, one can trans—
form the formulas of f,(s) and ¥4(s) to matrix equations, which have the
Gauss-Markov properties. Thie method of representation is more convenient
for computer simulation and computer solution of problems.

From the formulas ¥,(s), expressed by the Laplace transformation, one
can obtain the continuous state equations X(t)= F X(t)+G B(t) 2.3)

Y(t)= C x(t)+D V(t) (5.2.3
where B(t) is a unity white noise, which generates the stochastic model,
V(t) is the noise of observation or additive measurement noise.

Performing the transformation, one can obtain the discrete state equations

Xit =PXk + 1 B T

o TG Xk 4D Ve “here @=exp(FT) , ={ ¢(p)Gdp (5.2.4)
Performing the Z-transformation, one obtains
X(2)=(21-¢ Y'I 2zB(2), ¥,(2)=CX(2)+DV(z)=C(zI-¢ )'r zB(z)+DV(z) (5.2.5)
Therefore the transfer function of the discrete model is
H(z)= %(2)/B(2)= C(2I-¢)'r 2 (5.2.6)

As an example, one will transform a simple atomic clock model to the corres-
ponding Markov model. One supposesg that bk, s+1k; ko ke -
‘FO(S)— S(S+k, k:l.ka) (5‘8'7)

One can obtain the continuous state equations

gg:;:g%zg:gggt; where Fz[g _1]’ G-_—[‘f] | C=(rk Kk Bigy), D=0 (5.2.8)

The discrete state equations are o= PXut I Bra
‘PoK=CXK+ Dvk
where 10 A7(T=02
¢= o o, r=[ 5(2 )] C=(rk, k, k, bk,), D=0

1,
In the formulas (5.2.8) and (5.2.9) the coefficients are the following :
a=k kk; , O=exp(-&T) , Q= d'[l1-exp(-aT)] (5.2.10)

(5.2.9)

5.3 Analytical Methods of Spectral Approximation and Model Identification

There are two methods for the identification of models of time series
data. The time domain method is based on the curves of autocorrelation func-
tions. The frequency domain method is based on the curves of power spectral
densities. The commonly used time domain method of identification of general
ARTMA models 1s quite complicated, except for simple autoregressive models.
Therefore, it is of interest to study the frequency domain method for
identification of models. For a non-stationary time series with stationary
increments of n-th order, one must at first take the n-th order differences
in order to obtain stationary time series., Then one determines the curves
of autocorrelation function and the curves of power spectral density. One
will identify the models from the power spectral density curves S (w).

5.3.17 Interpolation Method of Spectral Approximation

For a given curve S(W ) one will make the approximation by the following
rational function _» Bo +B;w* 4B, W « » +  4Bnwm :
8" (w)= T+A W +A,W¥ 4 ¢+« +AR W27 (5.3.1)
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In order to determine the (n+m) coefflclents, one supposes that W=W; and

requires that S*(W)= S(w) for i=1,2,3,-+ ,(n+m). (5.3.2)
Then one obtains

(144, @07 +A, 0! 4+ +A, 005 )S( W)= (B, +B W +B,wi+  +B,Wi")= 0 (5.3.3)
for i=1,2,3,*",(n+m), where —S(to)lw__ Se *

From these (n+m) linear equations one can determine the coefficients
A| !AZ’ASQ"' A'n and B| ,BQ,B3,' .- s ,Bm .

For example, one supposes that  », .  By+B w® _
) (w)hm, where B,—So (5&3.4)

One can determine the coefficients A, ,A. and B, from the following equations
(144,00] +A,0] ) 5;~(5,+B,Wi)= 0 for i=1,2,3, (5.3.5)
5+.3.2 Least-squares Method of Spectral Approximation

For a given curve S(®), one will make the approximation by two steps.
The first step is the least-squares approximation by a polynomial as

s(w)xz 2w zao+a, W +a, wh e .- 4a,w?" (5.3.6)

The second step is the utillzatlon of the Pade approximation method, which
b3 4 L

Yields | o tsa,wte - sa, 0t D tRE HDa04 - 4D, @2 (5.3.7)

T+ quw* +q1m“+- EETREY
At the first step one obtains the error of approximation

d(w )=S(w )- }E: aw™ . For the minimization of the integral

D—j [S(m) ia ]2 dw, one obtains the necessary condition g£_= 0

for j=C,1,2,+*+*,n. Thus one obtains (n+1)equations in order to determine
the coefficients 4&a¢,a,,a2,4-*",2n. These equations are the following :

T
5 af [ 0 Pau=["ws(w)dw  for 3=0,1,2,++,n (5.3.8)
For example, one can obtain the follow1ng approximation :
Bo+B, w”

SO)mausa s st st e G (5.3.9)

8o @) &y -8y 8y A BeBi=a 8y _a,a,-a5
b M R 3 1 T30

Bo8y-87 a,a,-aj , " a,a,-a7

where B,=a,, B,=a,+

5¢3.%5 Determination of Parameters of the Model by Spectral Factorization

In order to determine the parameters of the model, one must perform the
spectral factorization according to the following formula :
* B, +B, W +B, w4 o+ 4B .
S(w)= T Ao Th etk 57 =B H(jw) H(-jw) where jw =s (5.3.10)

For example, if s(w)= 1+§§:PlAaw* , ome can obtain

JBB s + 1
= 3.1
H(s)= VE, 5"+ (A, +2VE)'8 + 1 (5.3.11)
Then, by the Z-transformation method or by the state variables method, one
can determine the corresponding discrete model ARMA (2,1), expressed by the
following formula : ___biz+ bo
H(z)= 8,2°48,2 + 2, (5.3.12)

497




VI. CONCLUSIONS

In time and frequency metrology, the conventional used methods are essen—
tially non-recursive methods. They have been developed separately according
to the envisaged problems, either for the characterization, or for the pre-
diction, or for the approximation, or for the modelization. The interrela-
tions between these problems and corresponding methods have not been clari-
fied. One finds very little common points of these problems and these used
methods.,

In this paper, an attempt to unify these problems and the corresponding
methods is made. The principal ideas are based on the optimal estimation
theory and the digital recursive processing methods, Also the mathematical
methods of statistics and linear systems theory have been extensively used.
Several methods for optimal recursive estimation of non-stationary time se-
ries have been used and developed. Two different models of non-stationari-
ties have been supposed: the deterministic polynomial models and the stochas-
tic models with stationary increments. For these two types of models, one
has synthesized optimal digital recursive estimators ( predictors, filters
and differentiators). One has applied these estimators to the atomic time
and frequency metrology. It ig clarified that the problems of characteriza-
tion, prediction, approximation and modelization are particular cases of
the general problem of optimal estimation of the states and the parameters.
Thus, one can resolve these problems by the unified theory and metheds.This
new approach allows us to establish the fundamental problems of time and
frequency metrology on a sound and rigorous mathematical basis regardless
of the user's applications. It can also provide much insight into more com-
plicated problems. Then the interrelations between the proposed methods and
the conventional methods can be easily derived.

From the viewpoint of the study of mathematical and statistical methods,
the main contributions of this work are the following :
(1) Utilization of the exponential weighting method to resolve the problem
of optimal estimation for the deterministic polynomial models., This method
allows us to avoid the difficulties and drawbacks in the realization of the
finite memory polynomial filters.
(2) Optimal synthesis of digital recursive estimators for the stochastic
models of non-stationary time series with stationary increments. This is an
extension of the classical Wiener filtering theory to the non-stationary
and discrete cases.
(3) Proposition of the design method of suboptimal digital filters according
to the general theory of Kalman filtering. For the non-stationary time se-
ries with stationary increments and for the case of steady-state optimiza-
tion, one has obtained some time-invariant digital filters. The transfer
funetions of these digital filters have been deduced.
(4) Synthesis of different optimal digital recursive estimators( predictors,
filters and differentiators) by the unified methods. Though digital filters
are widely used in many other domains, the digital predictors and digital
differentiators are more particular and are especially important for time
and frequency metrology.

From the viewpoint of the applications of statistical methods to atomic
time and frequency metrology, the main contributions of this work are the
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following @

(1) Application of digital recursive differentiators to characterize the
frequency and phase instabilities of atomie clocks. This method allows us

to estimate the variance and power spectral density function of frequency
instability. Therefore one can characterize frequency instabilities both in
the time and in the Fourier frequency domains.

(2) Application of digital recursive predictors to predict the random varia—
tions of atomic time scales. Two types of digital predictors can be used :
the optimal predictors for deterministic polynomial models with exponential
weighting of data, and the optimal predictors for stochastic non-stationary
models with stationary Iincrements.

(3) Application of digital recursive filters to smooth the time series data,
obtained from time comparisons of distant atomic clocks via a satellite,
This method is better than the least-squares method for real-time data pro-
cessing.

(4) For the modelization of the statistics of frequency and phase fluctua-
tions, one has deduced some theoretical models from the structure of atomic
¢locks. Then,iwo analytical procedures of spectral approximation and the
spectral factorization method are proposed, which allows us to identify the
parameters of stochastic models of atomic clocks.

We have developed several methods for optimal estimation of non-station-
ary time series. We have also applied these methods to atomic time and fre-
quency metrology. Several new concepts and definitions have been proposed.
For the latter, we have pointed out their specific advantages in applica-
tions. At present, the existing models and methods for time and frequency
metrology are well documented. They provide a good background for actual
applications. However, future researches will certainly include the develop-
ment of more sophisticated approaches, that may possibly improve the methods
of time and frequency metrology. In this regard, it seems that the optimal
estimation theory can play a key role, This is a very promising approach,
because this theory has a rigorous mathematical basis, and its concepts are
quite general to cover the domain of time and frequency metroclogy. Many
practical problems can be deduced from this theory as the particular cases.
Using the optimal estimation theory, we have tried to solve some fundamen-
tal problems of time and frequency metrology. However, the problems of time
and frequency metrology are quite diversified and very profound. This rich
domain is still widely open for further researches.
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Appendices

6,(Te)
0™ [ NOTE : Processing has been made for
b data of comparison between
clock (206) and clock (OP)
B from March 13 to March 19, 1981,
B Sampling period T=7.5 Min.
2.0
r—-
1.0 |
0 i i 11 I l | L1 |

!
0.5 0.7 1 1.5 2 3 4 5 7 10 15 20 30 56 70 100
Time constant T, (X7.5 Kin.)

Fig. A1 - Variance function Q(Tc)

NOTE: Processing has been made for
data of comparison between

s,(f)z clock (195) and clock (OP)
%10‘z sec.) &/, in July, 1982.

—d— for w,(s)

24 3.0 [ —&— for w,(s)

20 2.5
16 2,0
NOTE 2
12 1 The conditions of data 1.5
processing are the same

8 I ag for the Fig. A1 1.0

41 0.5 -

0 1 1 1 1 1 L ! L ] I /T,

4 8 12 16 20 24 28 0 0.2 0.4 0.6 0.8 1,0

4
Frequency f (X107*Hz) T=30 Min. T/Te=0.1, 6,=3.2 ns

Fig.r2- Power spectral demsity Sy(f) Fig.h3 - Variance of time prediction
W,(s) is determined by (4.2.5)
W:(s) is determined by (4.2.6)
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QUESTIONS AND ANSWERS

None for Paper #25.
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