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ABSTRACT

A brief resume of the evolution of Kalman filtering from
classical filter theory is presented. The required formatr of
the discrete filter model ig discussed. The recursive equations
for the discrete Kalman filter filter are then presented, but
not derived. Two scalar examples are given to illustrate the use
of the recursive equations. The first deals with estimation
of a random constant; the second illustrates the Wiener process.

1. INTRODUCTION

It has been about 20 years since R, E, Kalman published his classic paper on
recursive least-squares filtering [1]. In addition to its theoretical elegance,
Kalman filtering has proved to be eminently practical. This, no doubt, accounts
for its continued durability. The first applications in the early 1960's were in
position and velocity determination [2,3,4], both in space and terrestial
settings. Since then, applications cutside the navigation field have become more
common. For example, a recent issue of the Bell System Technical Journal was
devoted entirely to applications of Kalman filtering to load forecasting [5].
Also, a recent issue of the TEEE Transactions on Automatic Control was dedicated
to new applications of Kalman filtering, many of which were outside the tradi-
tional application area of navigation [6]. Thus, Xalman filtering is alive and
well, and the list of applications continues to grow!

Of necessity, this paper must be brief., Thus, it will be largely an overview or,
if you like, a guided tour of the bare essentials of Kalman filtering. With this
thought in mind, it is appropriate that we begin with a brief historical
perspective.

2. HISTORICAL PERSPECTIVE

Figure 1 shows a conventional telephone bandpass filter side-by-side with a Kalman
filter. At first glance, it looks ridiculous even to try to compare the two. On
one hand, we have a civcuit consisting of resistors, capacitors, etc.} on the
other, we have just a set of mathematical equations. One might logically ask,
"How in the world did that set of equations ever become known as a 'filter'?" The
answer lies in the historical evolution of modern statistical filter theory from
classical theory.
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Fig. 1 (a) Conventional analog filter and (b) Kalman filter

Figure 2 shows a simplified chronology of the three major branches of filter
theory as we know it today. Classical filter theory began in the early days of
telegraphy, and it continues today as an active discipline within electrical
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Fig. 2 Chronology of filter theory
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englneering. The basic problem of classical theory 1s shown in Figure 3. It is
basically one of synthesizing a given frequency response with R, L, C and
(nowadays) active elements., The word given is underscored to emphasize the fact
that the designer is assumed to know a priori what response is desirable in the
application at hand. The only problem remaining then is that of practical imple-
mentation of the desired response (to some degree of approximation). Obviously,
this problem is just as fresh and important today as it was in the 1800's.

DESIRED RESPONSE

|

GAIN

ACTUAL RESPONSE

0 f FREQUENCY

Fig. 3 The classical filter problem (low-pass example)

In the early 1940's, Norbert Wiener considered a different type of filtering
problem [7}. Suppose, as shown in Fig., 4, that one has an additive combination of
signal and noise with overlapping frequency spectra. We wish to remove the noise
from the signal. However, it should be apparent that no fllter in the usual sense
will do a perfect job of removing noise without destroying the signal. Further—
more, 1t is not at all obvious what sort of compromise filter response will get
rid of most of the noise with minimal damage to the signal. This is the problem
that Wiener addressed during the World War II period.
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{a) SIGNAL AND NOISE SPECTRA (b) WIENER PROBLEM

Fig. 4 Wiener filter problem
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Wiener began by assuming both the signal and noise to be nolselike in character
with known spectral characteristics. He then chose minimum—mean—-square—error as
the performance criterion, and he proceeded to develop a solution for the
weighting function (Inverse transform of the frequency response) of the filter.
The "solution” which is in the form of an integral equation can be solved (with
some difficulty) in the stationary (time invariant) case, and Wiener theory is
still used in some applications. However, its extension to discrete, multiple-
input multiple~output situations is awkward, to say the least. Thus, in a large
class of problems the older Wiener methods have been replaced by those of Kalman.
Note that the final solution of the Wiener problem is just a transfer function.
The classical problem of synthesizing the transfer function still remains after
the Wiener problem 1s solved.

In 1960, R. E. Kalman published a new solution of the least—squares filtering
problem [l}. Even though Kalman's methods were much different than those of
Wiener, the underlying assumptions were the same. In Kalman's formulation of the
problem, the noisy measurements were assumed to be discrete rather than continuous
in time, and the signal and nolse were modeled in vector rather than scalar form.
Kalman then proceeded to develop a solution for the conditional mean of the vector
process (1.e., the "signal”), conditioned on all avallable measurements. In the
Gausslan case, this conditional mean also minimizes the mean square error, so the
end result is the same as that obtained with the Wiener theory. Kalman's solution
is recursive in form, though, which makes it readily ammeanable to programming on
a digital computer, either in real time or off line.

In summary, we might characterize the Wiener approach as a scalar weighting
function method, whereby the desired estimate of the signal is computed as a
weighted sum of past measurements. This procedure has been modified somewhat in
recent years to ease the computational burden, but it still is basically a
welighting function approach. On the other hand, Kalman's solution was discrete
from the outset, and it 1s characterized by vector modeling of the noise and
signal processes and recursive processing of the measurement data. Over the past
20 years, this approach has proved to be remarkably versatile in its ability to
accommodate a wide variety of practical filtering problems. There is every reason
to expect this activity will continue in the future,

The evolution of linear filter theory from frequency-selective RLC circuits to a
set of mathematical equations should now be clear. Once one makes the transition
from continuous to discrete measurement, the filter becomes just a prescribed set
of arithmetic operations on the sequence of samples. The prescribed operation in
the Kalman filter case 1s developed using the methods of probability and
statistics because of the minimum—mean—square—error performance criterion. Thus,
at times, the theory looks more like statistics than electrical engineering. Yet,
its roots go back to the early days of telegraphy.

3. A SIMPLE AVERAGING EXAMPLE

The recursive philosophy which is essential in Kalman filter theory can be
illustrated with a simple example. Suppose we have a sequence of noisy
measurements of some unknown constant. We wish to simply average the avallable
measurements and use this as a measure of the unknown constant. Assume that the
measurements come to us sequentially in time, and denote them as zZ,,Z],=44,Z),-
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The last measurement, zp, 1s the measurement at current time ty. We can now
compute the average at each point in time in either of two ways:

Batch Processing Recursive Processing
Time Averaging Formula Time Averaging Formula
t, (Ave), = z, ty (Ave), = z
2o ¥ 5 1 1
ty (Ave)l = ty (Ave); = E—(Ave)0 +-§ z,
z vz, +z
o 1 2 - 2 L
t2 (Ave)2 = *ﬂ_‘—fg—"*‘* t3 (AVQ)Z = 3 (AVE)l + 3 23

etc. etc.

Clearly, both methods lead to the same sequence of sample averages. However, as
the process progresses, the recursive computation has two distinct advantages over
the batch method: (1) The measurements ZysZ]sseerZ) do not have to be stored
individually, and (2) the number of arithmetic operations remains the same with
each step. Thus, the recursive approach avoids an escalation of the computational
problem as the amount of measurement data increases. This 1s certainly ilmportant
in problems involving a large number of measurements. In effect, with recursive
processing the new measurement is simply used to update or refine the old
estimate. The updated estimate is then projected ahead to the next step, and the
process is repeated. This 1s the basic computational philosophy of the Kalman
filter; it is to be contrasted with the batch philosophy, whereby all available
measurements are stored and then summed with appropriate weight factors to yield
the desired estimate.

4, THE DISCRETE KALMAN FILTER

The theory and details of Kalman filtering can be found in a number of textbooks
[8,9,10], so we will only touch on the high points here. In discrete Kalman
filter theory, the process to he estimated must be modeled in the following vector
form:

Xl = ¢kxk + Wy (1)

where
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State vector at time tk

P

H

State transition matrix

£
il

X Input white noise sequence characterized by a covariance

which is defined as

elweil = Lo i 2)

Equation (1) may result from sampling a contianuous system driven by white noise.
This does not have to be the case, though. Some physical problems are inherently
discrete at the outset and there need be no continuous counterpart. The discrete
process equation, Eq. (1), stands in 1its own right,

The measurement relationship connecting the noisy measurement zp to the state
vector xi must be of the form

z, =Hx +v

k k'k k (3)

where

N
]

Measurement at time tk

jae]
ti

K Linear connection matrix

v, = White measurement noise sequence characterized by a
covariance matrix Ry

which is defined by

R i=
T k?
Blvvil = 1o sa (4)
and
T
E[wkvi = 0, for all 1 and k. (5)

Equations (3), (4) and (5) simply state that there must be a linear connectilon
between the measurement and the process to be estimated, and that the process
(which is driven by wy) and measurement noise must be uncorrelated.
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Equations (1) and (3) are sometimes loosely referred to as the Kalman filter
"model™, and they may seem unduly restrictive at first glance. However,
experience of the past 20 years has shown that the model is remarkably versatile
in its ability to accommodate a wide varlety of physical applications.

Formulating the model is, without a doubt, the most difficult part of any applied
Kalman filter problem, and there is no one simple rule for doing this. In the
case of continuous processes, one must ask the question, "What set of linear
differential equations relates the various random processes under consideration to
white noise inputs?” Or, saying the same thing another way, "What linear
dynamical operations will shape a set of white noise inputs inte the processes
being considered?” If the appropriate linear dynamical connection can be found,
then the problem can be put into state space form, and the discrete form specified
by Eq. (1) can be found. Of course, the linear connection between the measurement
sequence and the process must also be formulated. This, though, 1is usually the
easier half of the modeling problem,

5. THE RECURSIVE EQUATIONS

We begin by assuming that the estimation problem at hand fits the form given by
Eqs. (1) and (3). We then pose the question: What sequence of estimates of the
state vector will minimize the mean square error? The recursive solution of this
problem 1s summarized in Fig. 5. Its derivation is given in the tutorial
references previously cited, so it will not be included here. However, each major
step in the recursive loop deserves further comment.

ENTER PRIOR ESTIMATE ?; ANC
ITS ERROR COVARIANCE P

'

COMPUTE KALMAN GAIN:

k

Ty il -1
Ky = Pka(HkPka F R \\‘
PROJECT AHEAD:
5= _ 3 UPDATE ESTIMATE:
e+ 1T AT o
o . . Ko T X% T Rz kxk)
k+ 1 "k'k'k T Yk

M

COMPUTE ERROR COVARIANCE:

fs LD KRR

Fig. 5 Kalman filter recursive loop (super minus denotes a priori)
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We enter the loop with an initial estimate and its error covariance. The starting
point in time occurs with the first measurement, and we usually let this be t=0
(k=0). The initial estimate x; is based on our prior knowledge of the process,
and this is zero for processes where we have no prior measurements and we know
this process mean to be zero. In this case, the initial error covariance P is
just the covariance of the process itself, which is assumed to be known a priori.

The first step in the loop is to compute a matrix known as the Kalman gain. Note
from the first block of the loop in Fig. 5 that the Kalman gain depends on the
known model parameters H,, R, and the initial P, but it does not depend on the
actual measurement Zz,.

0?

The next step in the recursive process is to use the measurement z, to update the
prior estimate x5. The equation for doing this is shown in the second block of
the loop, and note that it is similar in form with that of the simple averaging
example considered in Section 3. That is, the updated estimate x, is formed as
the sum of the prior estimate x; plus a correction term which is the measurement
residual weighted by the Kalman gain.

The third step is to update the prior error covariance P_ and obtain the error
covariance associated with updated estimate. One canAthgnk of P, as a measure of
the "fuzziness"” associated with the updated estimate x,. The terms along the
major diagonal of P are the variances of the estimation errors for the respective
components of the state vector, The off-diagonal terms are the corresponding
covariances.

The final step in the recursive loop 1is to project %0 and P, ahead to time tj.
This is done via the equations given in the fourth block of the loop shown in
Fig. 5. In effect, the state estimate is projected ahead through the natural
dynamics of the system as determined by the state transition matrix. Additional
uncertainty is added to the projected estimate because of the process noise wy,
and this is accounted for with the Q) matrix in the error covariance projection.

After the projection step, the estimator is ready to repeat the recursive loop and
assimilate the next measurement z) at time tj. If the time between measurements
is sufficient to permit all the required computations, the recursive estimation
can be done on line. If not, it must be done off line. Two simple scalar
examples will now illustrate the use of the recursive equations,

6. KALMAN FILTER EXAMPLES

(a) Estimating an Unknown Random Constant

Suppose we wish to estimate an unknown constant based on a sequence of noisy
samples of the constant. For example, this might be the bias om a particular
instrument that had just come off the assembly line and is now ready for
calibration. Let us say that our past experlence with similar instruments tells
us that the blas is as likely to be positive as negative, and most of the previous
instruments tested were found to have blases in the range of +2 units. Based on
this crude prior information, it would be reasonable to model the unknown constant
(i.e., the bias of the untested instrument) to be a zero-mean Gaussian random
variable with a variance of 22 units.
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A typical sequence of measurements for this examples is shown in Fig. 6.

TRUE VALUE OF BIAS

MEASUREMENT

(]

TIME

Fig., 6 Constant bias example

Suppose the master instrument used for measurement has a random error of 0.5 units
rms, and that this error uncorrelated from step to step in the measurement
process. The model parameters can now be specified as follows:

(1) The process satisfies the discrete state equation xy4] = lex,+0, because x is
assumed to be constant. Thus

by 1
Qk_o
We assumed a direct one—to-one noisy measurement of x. Thus

We assumed the measurement error to be 0.5 units rms, or a variance of
0.25., Therefore, Ry is

Ry = .25

Note that ¢k, Qk, Hk, and Ry do not depend on time, so the subscript k could be
omitted in this simple example.

As stated previously, prior knowledge of the process led us to assume x to be a
zero—mean Gausslan random variable with a variance of 4 units. Thus, the initial
conditions are

-~

X, 0

P =4
We now enter the loop at t=0 and compute the Kalman galn (see Fig. 5).

= &4 ® Ly} _1—_]:...§_
K, = 4r1(1vdel + .25)7 = 3




We update the estimate next.

H

16
0 +*17(Zo - 1:0)

1 16
=17 0+ 17 °%,

The P matrix associated with ﬁo is then computed as

P o= (1 - 16

4
o 17 D4 =17

Finally, we project ﬁo and P, ahead to the next measurement.

- 4 4
Pl—l'ﬁ*°l+0=‘i’7‘“

We are now ready to repeat the process at tj and assimilate z] in a similar
manner, and so forth.

Before leaving this example, it should be noted that the Kalman filter result is
not the same as that obtained by simply averaging the measuremeunts (Section 3).
The difference arises because the Kalman filter gives the initial a priori
estimate nonzero weight when blending it with the first measurement z,. This
will, of course, cause the a priori estimate to propagate indirectly into the
subsequent estlmates as the recursive process proceeds. This distinguishes the
Kalman filter from maximum likelihood estimation, where we usually assume that no
a priori information is available, To make a Kalman filter artificlally look like
maximum likelihood estimation, all one has to do is make the initial P matrix very
large. Then the initial estimate is given zero weight on the first step, and all
subsequent estimates will depend only on the measurement sequence.

(b) Brownian Motion (Wiener) Process

Figure 7 shows a noise process which is being generated as the output of an
integrator driven by Gaussian white noise. This experiment can be readily
demonstrated in the laboratory just by connecting the output of a wideband noise
source to an analog integrator with the initial condition being set at zero. Such
a process is known as a Brownlan-motion or Wiener process. Clearly, x(t)
satisfies the first order differential equation

x = £(t) (6)
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ft) ~———— hwm—  x(t)
(WHITE GAUSSION NOISE) 0

WIENER PROCESS

Fig. 7 Generation of a Wiener process

Thus, discrete samples of x(t) are related by the recursive equation

Xptl T K TV (7)
where
t
k+1
W, = ftk £(t)dt (8)

Clearly, if f(t) is white noise, the wy, sequence will be white and the process
model fits the required format,

Suppose we have a sequence of noisy measurements of this process as shown by the
dots in Fig. 8. Further, suppose that the rms measurement error is 0.5, and that

MEASUREMENT SITUATION

Fig. 8 Typical measurement situation for random walk example

Wy for a sampling interval of 1 sec 1s normal with zero mean and unit variance.
The model parameters are then
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4 = 1
Q =1
H =1
R, = (.5)% = .25

The initial conditions in this case are

Note that the P_ condition is unusual. It says that we know the initial process
state at t=0 perfectly! This is due to initial zero condition on the integrator;
we know its output cannot change instantaneously. To see how this unusual P
affects the estimator, we cycle through the recursive loop at t=0 (see Fig. 5):

0+1(1+0+1 + .25) L = ¢

Calculate gain: Ko

~

Update estimate: X,

]

0 + O-(z0 - 1+0) =0

Update P: PO = (1 — 0¢1):0 =20
Project ahead: x] = 10 =0
PI = 1401 + 1 =1

Note that the Kalman filter gives the noisy measurement z, zero welght. This is
just as it should be; it is worthless relative to our perfect knowledge of the
state at t=0,

It is instructive now to cycle through one more step of the recursive process. At
t=1:

Calculate gain: K. = 1e1(lel-]l + .25)«1 ‘%

il

u| &~
N

Update estimate: x, = 0 + %—(z1 - 10) =
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4 1
Update P: Po= (1 - 5 e1) -3
Project ahead: xz = lex;
- 1 -8
Pymleg b+ l=x

Notice now that the a priori estimate at t=1 is only given a weight of 1/5, and
the measurement recelves a weight of 4/5. This is due to the process “random
walk" that takes place in the interval from t=0 to t=1l. The a priori estimate is
thus quite uncertain at t=1, and the measurement, even though noisy, contains
valuable new information about the process.

The recursive data processing can now be continued on ad infinitum, It might be
mentioned that this least—-squares estimation problem works out to be elementary
when viewed from the Kalman viewpoint. It is somewhat elusive, though, when
viewed from the Wiener viewpoint because of the nonstationary character of the
Wiener process.

7. CLOSING COMMENT

We will close with these two simple examples, knowing that there are a number of
application papers to follow in this session of the PTTI meeting. Hopefully, this
tutorial overview will be of help in understanding the subsequent papers.
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QUESTIONS AND ANSWERS

MR. BROWN:

What you always wanted to know about Kalman Filtering but were afraid
to ask, or something like that.

MR. McCONAHY:

Mac McConahy, JHU/Applied Physics Lab. Grover would you like to say a
few words about one of the things that I think rather puzzles many
people about Kalman Filters, and that is, 'choosing' the process noise
co-variance matrix in a practical application?

MR. BROWN:

Okay. The process noise co-variance matrix, that is the Q-matrix you're
talking about. Well, I got to go clear back here, I'm afraid. Can I get
the projector turned on again, please?

Going back to this particular model here, you have to have the character-

ization of WK and, of course, the Q-matrix is WK times WK transposed and

then the expectation of that; so it is a covariance matrix, and what you
have to do is describe this in terms of the dynamics of the system,
Usually, you end up getting this equation by starting out with some kind
of continuous dynamics that relate the state vector to white noise inputs.
Now, if you have that, if that's the starting point, then you can write

a set of dynamical--you know, you can write it out explicitly what this

WK is; usually write it out as a convolution integral. Now, you take WK

transpose times W take the expectation of that, and you end up having

K,
to evaluate a whole bunch of double integrals, is what it amounts to; and
I guess I can't say more than that, except that is one of the most

difficult parts of the problem, It's a very doggy job.

One of the sneaky approaches is the risk of adding something to that.
There is a sneaky approach sometimes. TIf the step size is relatively
large, sometimes the effective way of getting the Q-matrix is to sub-
divide the large integral into infinitesimal integrals, approximate the
QK for the infinitesimal integral as being a diagonal matrix. No, not a

diagonal matrix, but a matrix consisting of only first order terms of
delta t.

Then you cycle through a whole bunch of steps to find the Q for the
whole integral, just using the projection on the P-matrix form,

+
Use QPQ , that extra term, and you keep cycling through that.
That is sort of a vague description, but the Q-matrix is kind of hard
to find.
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MR. WEISS:

MR.

MR.

MR.

DR.

MR.

Mark Weiss, N.B.S., To what extent does using a Kalman Filter assume
a certain form of a noise, such as excluding flicker noise?

BROWN:

I'11 simply say this, if this is a bit of a cop-out that will apply to
any situvation if you can make it fit the model that is up there now.
Now, there are certain cases where you can always fit it into this
particular form. If you start out with the processes of——if you

start out with stationary processes that are describable in terms
of~-well, where the spectral characteristics are rational., Then you
can always choose the state vector to describe that which is such that
it's the result of putting input white noise into some kind of linear
dynamics to give that spectral characteristic. So any time the

spectral characteristics are describable by rational spectral functions,
then your in business as far as the Kalman Filter is concerned--.

But that is not the only case. You can also handle non-stationary cases.

You can model any case where the process that you are talking about can

be thought of as the result of--let's see what I want to say--putting
white noise inputs into a system of linear dynamics,

WEISS:
Would you handle flicker noise?
BROWN:
No, I don't think so. You see, that's something you people know a lot
more about than I do, but it appears to be that that's a case where you
have a spectral function, which is not rational. It's fractional powered,
and I don't know how to do that.
BARNES:
You can approximate it with an empirical approach.
BROWN:
If it's truly a spectral function where it involves fractional powers

of Omega, then T don't know any way to model it exactly, using the
Kalman Filtering methods.
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