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ABSTRACT

The main emphasis of this tutorial paper 1s on the formulatioun of
appropriate state—space models for Kalman filtering
applications. The so-called "model” 1is completely specified by
four matrix parameters and the 1initial conditions of the
recursive equations. Once these are determined, the die is cast,
and the way In which the measurements are weilghted is determined
foreverafter. Thus, finding a model that £its the physical
situation at hand is all important, Also, it is often the umost
difficult aspect of designing a Kalman filter. Formulation of
discrete state models from the spectral density and ARMA random
process descriptions 1is discussed. Finally, it is pointed out
that many common processes encountered in applied work (such as
band~limited white noise) simply do not lend themselves very well

to Kalman filter modeling.

INTRODUCTION

Kalman filtering 1s now well known, and tutorial discussions of the tech-
nique are given 1in a number of standard references [1,2,3]. The filter
recursive equations are summarized in Figure ! for refereunce purposes here,
It should be noted that once the initial conditions and the ¢k’ Hk’ Rk’ Qk’
parameters are specified, the die 1s cast and the way in which the
measurement sequence 1s processed 1is completely determined. Thus, the
specification of these parameters 1s especially important -- they are, in
effect, the filter "model”, The emphasis in this tutorial paper will be on
the modeling aspect of Kalman filtering. To see where these parameters come

from, we will now review the basic process and measurement equations,
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Figure 1 Kalman filter loop

THE DISCRETE PROCESS AND MEASUREMENT EQUATIONS

The starting point for discrete Kalman filter theory begins with the process
and measurement equations. The random process under consideration {is

assumed to satisfy the following recursive equation
= +
X ¢ X W (1)

where k refers to the k-th step in time, x, is a vector random process,

¢k is the transition matrix, and Wy is a Gaussian white sequeunce with a

covariance structure given by
T
E[xkxk] = Q (2)
The measurement relationship is assumed to be of the form

z, = Hkxk + vy (3)

where v, is also a Gaussian white sequence, uncorrelated with Vi and

described by the covariance
Elv,v.] = (4)
AR

In words, then, the key parameters of a Kalman filter model can be described

as follows:
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(1) is the transition matrix that describes the natural dynamics of

¢k

the process in going froum step k to k+l.

(2 H is the linear connection matrix that gives the 1ideal
(noiseless) relationship between the measurement 2y and the
process to be estimated x.

(3) Qk describes the additional nolse that comes Into the X, Process

in the At interval hetween step k and k+l1.

(4) Ry describes additive measurement nolise,

It is dimportant to note that the discrete model described by FEgs. (1)
through (4) stands 1in its own right. It is not an approximation of some
continuous system, nor does it have tc be related to another continuous
linear dynamical system in any way. Once the discrete model 1s assumed, the

recursive estimation process given in Fig. 1 follows directly.
IMPORTANCE OF THE GAUSS{AN ASSUMPTION

We will digress for a moment and look at the Gaussian assumption used in
Egqs. (1) through (4). If w, and v, are Gaussian white sequences, then xj

and z, will be Gaussian processes, HKven though the Gaussian assumption :is

k
often omitted in discussiong of least—squares flltering, we make here with
no apology. The reason for this 1is that nminimizing the mean square error
really does not make very good sense for non—Gaussian processes. To
illustrate this, consider the two processes shown in Fig. 2. The first is a
scalar Gauss-Markov process which has the general appearance of typical
noise, The second process 1s the random telegraph wave which switches
between +1 and -1 at random points in time. TIf the parameters of the two
processes are adjusted appropriately, they can be made to have identical
power spectral density functions. Yet, they are radically different
processes! The least-squares prediction far out into the future is zero for
both cases. This makes good sense in the Gauss—Markov case because zero is
the mean and most likely value. On the other hand, it is ridiculous to
predict zero in the random telegraph wave case., We know a priori that this
waveform is never zero, We would be better off to predict either +1 or -1
and be correct half the time than to predict zero and be wrong all the time!
Thus, the Gaussian assumption 1is a reasonable one in the least squares

estimation theory, and to stray from it leads us 1lato dangerous territory.
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Figure 2 Gauss—Markov and random telegraph waves

TRANSITION FROM A SPECTRAL DESCRIPTION TO A DISCRETE STATE MODEL

In Kalman filter applications, we frequently begin with a spectral descrip-
tion of the various random processes involved. The problem then is to
convert this information to a model of the form specified by Eqs. (1)
through (4). The general procedure for making the transition to the
discrete model is as follows:
(1) Look for a continuous dynamical system that yields the desired
process when driven by white noise, (The white noise input
assures that W will be a white sequence.)

(2) Then write the dynamical equations in state-space form:
X = Ax + Bu (5)
(3) Solve the state equations for step size At and obtain

Xw] = ¢kxk + W (6)

(4) Determine the measurement equation from the particular situation

at hand.

To 1illustrate the procedure further, suppose the y process power spectral
density function Sy(s) can be written as a ratio of polynomials in > (or
mz, where w = —sz). The spectral function can then always be factored into
two symmetric parts, one with its poles and zeros in the left-half s plane,
the other with mirror—-image poles and zeros In the right-half plane. This

is called spectral factorization and is represented mathematically as
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5 (s) = S (s)+5_(s) (7)
y Yy y

where S+ and S; are the left- and right-half plane parts respectively.
S+(s) then becomes the shaping filter that will shape unity white nolse into
ayprocess y(t) with a spectral function Sy(s). {(See Ref. [1] for further
details.)

Now suppose that the shaping filter is of the form shown in Fig. 3. We seek

a state—space model for that dynamical system. One way of achieving this is

bs +b s e b
w(t) > > g(t)
(Unity White Noise) s +a_.s toeeea

Figure 3 Shaping filter

shown in block diagram form in Fig. &. The state-space equatlons are then

—> b0
r(t) —>| b.s
w(t) > 1 > !
sn + a sn_l + ee+ 3 > y(t)
n-1 o) )
o
Define state variables as ¢
r, t, ¥,*+*+ where r is an R
intermediate variable. —> bms
Figure 4 Shaping filter redrawn
3 B B - . 1_.1# _1 ~ 7]
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: - 0 0 0 1 . e . ’ + 1 " jwe)  (8)
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: (9)

Control system engineers refer to this as the controllable canonical form,
and it can always be achieved for the dynamical system as shown in Fig. 3.
If y is the process that is actually measured, then the H matrix is just the

row matrix of b's given in Eq. (9).
EXAMPLE

Suppose we have a scalar Gauss—Markov process y(t) whose power spectral

density function is

2 L2
s.() = —32 L (or AT E (10)
y -5 + B w- + B
We first factor Sy as follows:
2 2
_\/20 B \/20 B
Sy(s) T s +tR -5 +8 (11)

The shaping filter is then 2028/(S+B) which corresponds to the dynamical

y + By = V2028 w(t) (12)

This 1is a simple first order differential equation, so we only have one

equation

state variable, Call it X1. Our state equation is then

% = -Bx +J20%8 wt) (13)

1
The solution of this equation for a step size At is

_ —fAt
Xk+1 = @ Xk + wk (14)

At an be seen to be the transition matrix ¢k. The mean square value

and e
of w, can be determined from random process theory [l], and it works out to

be
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-ZBAt)

Qk = E[wi] = UZ(I*e

The process model is now complete.

UNIQUENESS

We might pose a question at this point:
Are Kalman filter models unlque?

The answer 1s an emphatic NO. We know from linear system theory that any
nonsingular linear transformation on the state vector leads to another
equally legitimate state vector, The choice of coordinate frame for
performing the estimation process 1is purely a watter of convenience.
Optimal estimates can be transformed freely from one coordinate frame to
another (through a linear transformation) and still remain optimal estimates

in the new frame of reference.
ARMA MODEL

Sometimes the random process model comes to us 1n the form of a differeunce
equation rather than a continuous differential equation. For example,
consider the auto-regressive moving average (ARMA) model that relates a

discrete process y(k) to an input white sequence u(k).

y(k+n) + aly(k+n—l) + oo any(k) = Blu(k+n*1) + o Bnu(k) (16)

There is a close analogy between difference and differential equations, and
it works out that this nth-order difference equation can be converted to
vector form in much the same manner as for a differential equation. If we
define an intermediate wvariable y“ (k) as the solution to Eq. (l6) with just

u{k) as the driving function, and then define our state variables as

xl(k) = y'(k), xz(k) = vy (k+1), ete. (17)

then the system of Eq. (16) translates into state-space form as




r x, (k1) 0 1 0 0 « =« «» 1[ x, (k) o ]
%, ket 1) 0 0 1 0 o o x, (k) 0
. - - . + . u(k)

i xn(k+l) . ] —an —an_l « & = uul i Xn(k) | i 1 (18)

y(k) = 18 8, eee B ) [ x ()]
Xz(k)

. (19)

— Xn(k) .

Note that our cholce of state variables leads to the coantrollable canonical
form, just as 1in the continuous dynamical case. Of course, we could have
defined our state varilables differently and arrived at a form different from
Eqs. (18) and (19). We will not pursue this further other than to say the
choice of state varlables is (within limits) a matter of convenience for the

situation at hand.
PROCESSES DERIVED FROM IRRATIONAL SHAPING FILTERS

The random process modeling procedures discussed thus far have been
straightforward, They may be tedious for higher-order processes, but they
do not call for much imagination., There exlsts, however, a whole class of
processes where this is not the case. These are the processes that cannot
be thought of as the result of passing vector white nolse through a linear
dynamical system of finite order. Such processes are commonplace in
engineering literature. For example, bandlimited Gaussian white noise 1s a
very useful abstraction in communication theory. It 1is Gaussian noise that
has a flat spectrum in the baseband and then 1s zero out beyond the cutoff
frequency. It can be thought of as the result of passing pure white noise
through an idealized lowpass filter, but no such filter can be represented
as a ratio of polynomials in s of finite order. (Note that a Butterworth

filter can be made to approximate the ideal case, but not equal it.) The
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idealizations of bandlimited white noise are often a counvenience ian communi-

cation theory; however, they are an obstruction in Kalman filter theory.

There is a theorem from linear systems theory that 1is useful at this point,
Chen [4] gives us the following criterion for the realization of linear
dynamical models.

A linear dynamical model of the form

il

% = AX + Bu

(20)

il

y Cx + Du

will exist for a system with an input-output impulsive response G(t,1),

if and only if, G(t,r) is factorable in the form

G(t,r) = M(t)N(r) (21)

M and N are finite~order matrices, so if G(t,t) is scalar (i.e., single-~
input, single-output), M(t) is a row vector and N(t) 1is a column vector.
This theorem can then be used as a test to see if a dynamical system will
exist for a corresponding 1mpulsive response function, Furthermore, the
factorization provides the necessary information for realization of the
model. (See Chen [4] for further details.) We will use Flicker noise to
illustrate the use of Chen's theorem. Flicker noise is of special interest
to the PTITI community because of 1ts presence in precision f{requency
standards. 1t 1is characterized by a power spectral density function of the
form of 1/f at the frequency level, or 1/¢> when referred to the phase level
[5,6]. A block diagram showing the relationship between flicker noise and

white noise is given in Fig. 5.

White 1 1
Noise > /3 > 5 —~————> phase {(time)
w(t) 5 Frequency

Figure 5 Block diagrams relating flicker noise to white noilse

Clearly, the transfer function relating dnput white noise to the output

phase x(t) is 1/53/2. The inverse transform of 1/53/2 gives the Impulsive
response to an 1impulse applied at t=0. This 1is 2/t/Vw. Thus, for an

impulse applied at t=t, we have (in Chen's notation)
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G(,t) =2 Ve, t> (22)
yn

The question is, "Is G(t,7) factorable in the form M(t)N(t1)?" It appears
that it is not, although this 1is difficult to show in a rigorous sense.
This being the case, Chen's theorem says that no linear dynamical system
will exist that correspouds to the G(t,T) of Eq. (22)., This is to say that
no finite-order state model will exactly represent flicker mnoise! 0Of
course, the state model 1is essential for Kalman filtering, so this leads to
a dilema when one attempts to Include flicker noise in a Kalman filter clock
model. This 1is the subject of a companion paper in these Proceedings [6],

so we will not pursue this further here.
SUMMARY

Various aspects of Kalman filtering modeling have been discussed briefly in
this paper. Perhaps the most important thing to remember 1s that the random
processes under consideration must be modeled in vector state-space form.
This can often be done with exact methods. If the exact methods discussed
here cannot be used, as 1in the case of flicker noise, then one mist seek
approximate finite-order vector models in order to form a workable Kalman
filter. The measurement model usually does not cause difficulty, because it

simply depends on what state variables are being observed.
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QUESTIONS AND ANSWERS

VICTOR REINHARDT, HUGHES AIRCRAFT COMPANY: I think you are right
about that not being able to be factored, and I think that I have
a reason for that. You can show that flicker noise can be
mathematically generated by the sum of an infinite number of
gaussian processes where the beta term goes from zero to
infinity. Therefore, there are infinite time constants in the
process, So, you can't give a state vector at any one time,
because the beta term goes from zero to infinity.

MR. BROWN: I agree with what you say. T think that it fits my
intuition to think the same thing, and I have read that paper
that you wrote on it. I think that it's a very nice paper, and a
nice way to look at it.

Other people have also approximated flicker noise with a
cascaded sequence of what we, in control system engineering, call
lead or lag networks, which gives kind of a staircase sort of
frequency response function, which, to a certain degree of
approximation, drops off at ten dB per decade rather than twenty
dB.

If you take any rational transfer function, or one that is
written out in integer powers, and look at the Bode plot, the
slopes go in multiples of twenty dB per decade, There are no
thirty dB per decade, or fifty dB per decade slopes.

In the case of flicker noise, and consider the filter that
shapes white necise into flicker noise, it requires an s to the
negative one-half power in the transfer function. That would give
a Bode plot that drops off at ten dB per decade instead of
twenty. What you would do 1s approximate that ten dB per decade
slope with a whole sequence of filters with alternating zeros and
poles. You then end up with a staircase shape response which, on
the average, has a ten dB per decade slope.

Incidentally, I think that this is a very good way to model
flicker nolse., The difficulty 1s that every time you put a new
pole in the system you have a new state model. If you want get a
reasonably accurate approximation of flicker noise that way, it
does 1Involve escalating the order of the Kalman filter
considerably. There is nothing wrong with doing it off-line for
analysis purposes. I think that there are some on-line cases
where it would not be accepted.

MR. REINHARDT: I think that some people have reported on a
similar method where they used a finite number of filters and it
worked very well in an operational case. If you try to limit that
process though, what happens is that all the poles run together,
and you end up with a branch line.

MR. BROWN: I guess my answer to that would be that, in any of
these processes, in the case of flicker noise for example, at
zero frequency and out at infinity, there are singular conditions
for either case. If it drops off as one over f, the area under
the curve out at infinity is not finite. You are talking about a
process with infinite variance, which is physically ridiculous.
The same thing happens at the other end of the spectrum, the
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area under the curve doesn't converge there, either. Physically
it makes sense, 1f you want to be careful and talk about
processes of finite variance, that you have to bound the power
spectral density at the low frequency end and at the high
frequency end. It has to roll off at least twenty dB per decade
in order to have a process of finite variance.

It doesn't bother me to think of putting in a filter at the
origin which will bound the frequency content at zero frequency,
and also put one in at the high end and make it roll off at least
twenty dB per decade.

Incidentally, that impulse response function is not original
with me. Other people have written about that before, including
yourself, T think.

JIM BARNES, AUSTRON, INC.: I have done a fair amount of
simulation of flicker noise with polynomials, the lead-lag
networks you mentioned, and have one comment in their defense:
Three or four stages can do an amazing amount. You can cover as
much as three to four decades of frequency with only three or
four stages.

MR. BROWN: Oh, is that right? It isn't as bad as it might appear
at first glance then. I haven't used it, but would have imagined
that you would need a fairly large number,.

MR. REINHARDT: As another comment, even a single filter, which
generates a random telegraph, will generate a flat Allan variance
of about two orders of magnitude in tau, right around the peak.
Then you really have to put a pole every order of magnitude or
even every two orders of magnitude.

MR. BROWN: A1l of these are, of course, approximate models for
the reasons which I just cited.

MR. ALLAN: I think, in practice, the problem with flicker ncoise
is not a serious one, because it's only at the extremes, as you
pointed out, at zero and at infinity that you have difficulties
with one over f integration. In practice, that's not where the
Fourier frequencies are. In reality, a few stages of the filter
will work very nicely in describing, predicting or simulating a
fiicker process.

MR. BROWN: You need something like that though as far as the
Kalman filter 1s concerned. You can't afford to have these
fractional powers of s is you are going to do the state model.
You have to have something where you only need to worry about
integer powers of s, and 1f you can do that by only adding two or
three polesg, that would be a very feasible way to approximate it
certainly.






