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ABSTRACT 

In this paper we construct a relationship between the Allan variance parame- 

ters (h2, hi, ho, h-1 and h-2) and a Kalman Filter model that would be used to 

estimate and predict c lock  phase, frequency and frequency drift. To start 

with we review the meaning of those Allan Variance parameters and how they are 

arrived at for a given frequency source. Although a subset o f  these parame- 

ters is arrived at by measuring phase as a function of time rather than as a 
spectral density, they  all represent phase noise spectral density c o e f -  

ficients, though not necessarily that o f  a rational spectral density. 

The phase n o i s e  spectral d e n s i t y  i s  then transformed i n t o  a time domain 

1 covariance model which can then be ased to derive t h e  Kalman F i  l t e r  model 

1 parameters. Simulation results o f  that covariance model are presented and 

1 compared to c l o c k  u n c e r t a i n t i e s  predicted by A 1  lan variance parameters. 4 two 

1 s t a t e  Kalman Filter model i s  then derived and the significance o f  each state 

1 isexplained. 



INTRODUCTION 

The NAVSTAR Global Positioning System (GPS) has brought about a challenge -- 
the challenge of modeling clocks for estimation processes, The system is very 

reliant on clocks, since its navigation accuracy is directly related to clock 

performance and the ability to estimate and predict time. 

The estimation processes are usually in the form of Kalman Filters, or vari- 

ations thereof such as Square Root Information Filters, These filters range 

from the large Ephemeris Determination Filter in the Control Segment, to 

Navigation Filters in the User Equipment, to Positioning Filters for station- 

ary positioning or for merely solving for time and frequency in a Time Trans- 

fer system. In all of these applications, clock states and thus clock models 

exist. Not all of the models are necessarily proper. 

It is the purpose of this paper to shed some light on how to model clocks for 

Kalman Filters. The presentation of clock statistics as Allan Variances has 

frustrated systems engineers for some time now because they don't know how to 

interpret them or how they can be used to predict system performance.. The 

problem is even compounded because flicker noise is not a rational process. 

In the past, Or James Barnes (I9') and Dave A 1  lan had shed some light on 

the clock modeling problem, although some of it was well in the past 

(1966)('). For some young modern day engineers, this work is hidden in old 

l E E E  proceedings and NBS Technical Notes. Here, we are going to resurrect 

some of that work and form it into Kalman Filter models, but not hithout 

problems because of the flicker noise phenomenon. 

Review o f  the  Allan Variance Parameters 

The Allan Variance parameters o f  an o s c i l l a t o r  or atomic frequency standard 

are based on measurements of phase differences between that oscillator or 

atomic standard and a reference standard (which may be a low phase n o i s e  

crystal oscillator for short term - high frequency measurements). These 

measurements are processed in two ways -- spectral analysis for higher 

frequency phase noise and time domain analysis for the relatively low 



frequency variations. The s i n g l e  sided phase noise spectral density i s  

converted to a single-sided spectral density o f  fractional frequency 

fluctuation o f  the form ( 3 )  

5 ( f )  = h2 f2  + hlf + ho + h  t / f  + h - * / f 2  ; f <f < f  
Y - 1 -  - h  

where f l  and fh define t h e  measurement system noise bandwidth, and where t h e  

ha coefficients represent the following processes: 

h2 - white phase no i se  

hl - f l i c k e r  phase noise 

ho - white frequency noise 

h-1 - flicker frequency noise 

h-2 - random walk frequency n o i s e  

Normally the spectral density of equation 1 i s  obtained from a combination o f  

the measured single-sided phase noise spectral density in radians/squared/Hz 

for a nominal frequency fo, and from the square root o f  the Allan two-sample 

variances, n y ( r ) ,  which are computed as ( 3 )  

where > i s  the expected value o p e r a t o r  and 

where +(tk) are t h e  measurements of t h e  phase differences mentioned earl ier. 



When plotted, ay(r), as shown in Figure 1, has the form ( 3 )  

for white, flicker and random frequency noises, respectively. In this paper 
we will only consider those three processes in the time domain for the Kalman 

Filter model. However, the white and flicker phase noises will be considered 

later in the model of the Kalman Filter measurement noise. 

As can be seen, the h, parameters can be obtained from two sources -- t h e  

single-side band (SSB) phase noise plot of a specification of an oscillator or 
frequency standard and its stability specification, which is given i n  terms of 

the Allan two-sample standard deviation. The SSB phase noise spect:rum is 

usually given in dBc/Hz, or 

2 5 ( f )  = 2010gfo + 1010g[h2 + hl/f + ho/f + h-l/f3 + hTp 
4 

/ f 4  I 9 1 

Also of interest in later discussions is the spectral density of t i m e  

fluctuation x ( t )  in seconds, where 

so that 

in seconds squared per Hz. 





Transformation to a Statistical Covariance Model 

Here, the work of Barnes and Allan is expanded a bit to develop a co- 

variance model that at least provides an "uncertainty1' model one might use in 

a Kalman Filter.* An "uncertainty" model is defined here as one that has the 

variance propagation characteristics of a process, although t h e  time auto- 

correlation properties may be wanting. This is not unusual in modeling for a 

Kalman Filter where large size s t a t e  models are not feasible or when t h e  

process i s  not truly a definable stochastic process. For example, i f  we were 

to model position and velocity of a navigator in 6 states, where any acceler- 

ation excursions are considered an uncertainty in the change in position and 

velocity, that uncertainty is certainly not a "white noise" process by any 

means. 

Barnes and Allan only addressed the statistical model of flicker f'requency 

noise. However, the models for white and random walk frequency noise are 

straightforward. Just in brief, they derived a convolution i n t e g r a l  that 

related t h e  phase fluctuation due to flicker frequency noise to white noise, 

where 

where h(t) i s  a.n impu-lse response o f  a transfer function and ~ ( t )  is a white 
noise process, The secret is in the derivation of that impulse response, 

which they did for the flicker noise. To provide a more general derivation o f  

that impulse response, let us back up a bit. 

A theoretical definition of a white noise spectral density i s  a constant, such 

as the ho in equation 1. If it is possible, another spectral density can be 

related to a white noise spectral density as 

*For a tutorial on Kalman Filter Models, refer to Reference 4 by R. G. Brown, 
which is the previousl,~ presented paper in this meeting. 



where we define t h e  white noise density to be unity. Let us do that for the 

ho, h-1 and h-2 processes defined in equations 1 and 11, converting first to 

fractional frequency squared/radians/second and seconds squared/radians/- 

second, and then to a two sided spectral density S t .  Then, 

s l  (u) = h0/2 (white frequency noise) 
Yo 

S l  (4 = n h P l / a  ( f  1 i c k e r  frequency noi se) 
Y- 1 

2 
5 ,  (u) = 2 n  hm2/w2 (random walk  frequency noise) 
Y- 2 

and correspondingly, and respectively 

These can all be factored into the Fourier Transform o f  the impulse response 

h(t) , where respectively, 



Converting these to La Place Transforms (s=jw) and using t a b l e s  from Reference 

5, we have t h e  respective impulse responses 

h (t) = /h0/2 ~ ( t )  
Y n 

h (t) = n -l(t) - ; t 5 0 
Y-7  

hx , (t) = 2- - ; t , 0 
- 1 

x - 2 (t) = n - t  t ,O 

Where a ( t )  is the Dirac delta function and l ( t )  is the unit response function. 

We can now derive the autocorrelation, variance and cross-correlation 

functions o f  these processes from the following: 

The autocorrelation function is 

Using the property that 

and that 

t + r  

8 f (v) s(u-v)dv = f (u) 
0 



provided that O<ult+~, which it is if we restrict r to be greater than zero. 

The variance o f  a process is then 

2 
= h (u)du 

0 

Similarly, the cross-correlation function between two processes i s  

provided t h a t  they are d r i v e n  by t h e  same w h i t e  noise process. (Otherwise 

Rxy(t,r) is zero . )  

For each process then 

R ( t , r )  isundefined 
" 1 

R~ 
( t ; r )  does not exist because i t s  impu lse  response (equation 27) is 

infjnite at t = O .  However, if one bounds the flicker n o i s e  spectral density to 

- - f h ,  such as sugges ted  in Reference 2, a a frequency region of f 1 f 

stationary process i s  defined and an autocorrel at ion function can be defined 

as t h e  inverse Fourier Transfer of t h e  spectral density as 



which i s  a w e l l  de f i ned  f u n c t i o n  o f  T .  

Then, t he  var iances  can be de r i ved  as 

2 0 ( t )  = 7 t 
0 

u (t) = 2h it 2 
x 7 

- 

2 2 2  3 ( t )  = -j n h-*t 
X-2 

L 
i s  de f i ned  f o r  a l i m i t e d  bandwidth fh and nX 

L 
Here, u 

Y 
i s  d e r i v e d  

f r om eq8at ion  36. Cross c o r r e l a t i o n s  between f re&ency afib t ime  o f  l i k e  

processes a r e  then  

o r ,  f o r  zero c o r r e l a t i o n  time (c ross-covar iances) .  



Equations 44 through 49 and 53 through 55 could be used to define a covariance 
matrix at any t i m e  t describing t h e  combined uncertainty in instantaneous time 

and fractional frequency. That is 
r- 1 

L 1 

However, discrete Kalman filters do no t  estimate instantaneous frequency, but 

an average fractional frequency over a Kalman filter time interval a t .  Let 

that average fracti~nal frequency be 

Then, using equations 40 through 42 with r = ~ t ,  but first simplifying 

equation 41 to a steady state va lue  (large t / , )  of 

and equations 47 through 49, a new covariance can be computed ,  dhe re  



all o f  which is a well-balanced function o f  t, except the 2,2 term that has 

terms as a function of n t  that basically describe the Allan standard deviation 
(within ln2). 

Transformation to a 2-state Kalman Filter Covariance Model 

It should be noted t h a t  both x and are nonstationary random processes that 

grow with time. If we wish to obtain a measure of this growth over a n t  

interval, we simply let t = n t  in equation 59 and obtain 

We now propose the following 2 - s t a t e  Kalman filter model. Let the state 

variables be de f i ned  as 

x l  = x (i.e., time as before) 

x2  = "Noisy" average frequency 

The precise meaning o f  x 2  will be made apparent presently. Now, following the 

usual notation of Kalman filter theory [ 4 ] ,  we let the transition matrix for 

a a t  interval be 

and w e  let the Q matrix be 

Q = Cov [ x (At) , ? ( A t )  1 

as given by equation 60. 



We also postulate that we will s t e p  the estimate o f  the s t a t e  vector and its 

error covariance ahead via the usual projection equations. 

We will now have a proper Kalman filter model except for the measurement 

equation. This portion o f  the model depends on the situation at hand, so we 

will omit further discussion o f  t h i s  here. (For example, the clock model 

migh t  be imbedded in a larger state model as in the GPS application [ 6 ] . )  

We now need to explore mare carefully the connection between our postulated 

s t a t e  model and the x and statistics as dictated b,y equation 60. First, by 

choosing our Q matrix as exact ly  that o f  equation 60, we are assured o f  having 

the proper growth of uncertainty in our time and average frequency estimates 

in the at interval. This is necessary in order to generate appropriate filter 

gains w i t h  edch step o f  the estimation process. Hawever, we cannot have x2  in 

our state model represent true average frequency, and at the same moment 

require the 1,1 term of the Q matrix to be nonzero. This is not compatible 

w i t h  the defining equation for average frequency. That i s ,  equation 57 s t a t e s  

Whereas, our s t a t e  model says 

We have defined x l  to be x, and thus x 2  must differ from by the additive 

discrete white noise term N ~ / A ~ .  We are comforted, though, with the fact that 

the averaqe x 2  i n  the state model i s  equal to the usual average frequency, 

It should be noted that the Kalman filter model proposed here i s  entirely 

self-consistent in terms of state-space t h e o r y .  The transition matrix i s  

legitimate in t h a t  it reduces to t h e  identity matrix for ilt=O; and Q is 

positive-definite for a71 :IC as it m u s t  he to be a legitimate covariance 



matrix. The only inconsistency lies in the state model's connection to the 

x,y processes are described by equation 59. In view o f  the remarks about 

flicker noise in the companion paper in these Proceedings 141, we should not 

expect to be able to make this connection exact. No finite-order state model 

will fit flicker noise perfectly! Thus, something has to give. We intention- 

ally kept the identity of time exact in our model, i .e . ,  x l = x .  We then 

circumvented inconsistency in the state model by letting x2 be a noisy version 

o f  7. The filter's estimate of x 2  is still a valid estimate of frequency, 
- 

though, because the mean of x2 is y. 

An Example 

Standard deviation plots of the time state x ( t )  of typical crystal oscillators 

are plotted in Figures 2 and 3, whose Allan variance characteristics are 

represented in Figure 4. Also shown in Figure 4 are plots o f  the standard 

deviation of time divided by r for comparison to the two-sample 

standard deviation. It has been suggested in t h e  past that a procedure to 

estimate the standard deviation of time is to simply multiply the two-sample 

standard deviation by the elapsed time. These plots either verify that 

estimate or verify the validity of the derivation provided earlier. 

Kalman Filter Measurement Noise 

Suppose one uses a phase lock loop to track the phase difference between an 

oscillator and a reference frequency source as shown in Figure 5. The 

variance of the tracking error 6 4  in radians due to phase noise of' the 

oscillator is given as 

where 







Ll2 
nf 
=3 
LT - 
LL. 





o f  a phase lock loop with corner frequency fp,~ and damping ratio o f  &/2, and 

S@(f) is the phase n o i s e  spectral density represented in equation 9. t r  
2 
4 4 

represents that part o f  t h e  measurement error introduced into t h e  Kalman 

Filter. It is usually a f f e c t e d  mostly by the h2, h l  and ho terms o f  S $ ( f ) ,  

depending upon the loop bandwidth. 

In a laboratory environment, the measurement error whose variance is depicted 

in equation 69 may be the only measurement error o f  significance. However, in 

such systems as GPS, it i s  usually dominated by thermal noise and other system 

e f f e c t s .  

SUMMARY AND CONCLUSIONS 

Because o f  flicker noise, good models o f  clocks for Kalman Filters can be 

elusive. In this paper we derived a two s t a t e  model o f  clock characteristics 

t h a t  can be used in a Kalman Filter. It represents the characteristics of a 

clock described in ternis of Allan variance parameters. We believe t h e  models 

presented within this paper are a vast improvement over those used in most 

applications of the NAVSTAR GPS system, and that they could also be used in 

many other applications o f  time and frequency where real-time estimates and 

predictions of time and frequency are required. 
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QUESTIONS A N D  ANSWERS 

V I C T O R  REINHARDT, [IUGHES AIRCRAFT CO. :  I h a v e  a  c o m m e n t  on f s u b  
h  a n d  f s u b  1. T h e y  a r e  n o t  r e a l l y  a r b i t r a r y ,  b u t  r e a l  p h y s i c a l  
p a r a m e t e r s  t h a t  h a v e  t o  b e  s e t  by t h e  e x p e r i m e n t .  J u s t  a s  w i t h  
t h e  w h i t e  n o i s e  p r o c e s s ,  y o u  h a v e  t o  s e t  t h e  b a n d w i t h  b e f o r e  y o u  
c a n  d e f i n e  t h e  a m o u n t  o f  n o i s e  t h a t ' s  g o i n g  t o  e n t e r  t h e  s y s t e m .  
T h e  w h i t e  n o i s e  p r o c e s s  i s  a n o t h e r  p r o c e s s  t h a t  r e q u i r e s  t h e  
d e f i n i t i o n  o f  t h e  h i g h  f r e q u e n c y  l i m i t ,  a n d  f l i c k e r  n o i s e ,  a  l o w  
f r e q u e n c y  l i m i t .  I t h i n k  t h a t ' s  r e a l  e f f e c t ,  b e c a u s e  t h e  A l l a n  
v a r i a n c e  g o e s  t o  i n f i n i t y .  S o ,  t h o s e  a r e  r e a l  t h i n g s  t h a t  you  
h a v e  t o  d e f i n e ,  t h e y  a r e  n o t  a r b i t r a r y .  I d o  t h i n k  t h a t  y o u  c a n  
l e a v e  t h o s e  p a r a m e t e r s  a s  t h i n g s  t o  b e  d e f i n e d  by  t h e  p e r s o n  
u s i n g  t h e  m o d e l .  

MR. BROWN: T h e r e  was s o m e t h i n g  t h a t  y o u  s a i d  t h a t  1 d i d n ' t  
u n d e r s t a n d .  W h a t  i s  i t  t h a t  g o e s  t o  i n f i n i t y ?  T h e  s e c o n d  
d i f f e r e n c e  i s  s t a t i o n a r y ,  t h a t  i s  t h e  r e a s o n  t h a t  i t  i s  u s e d .  

M R .  REINHARDT: I am t a l k i n g  a b o u t  t h e  e f f e c t ,  o f  h a v i n g  a d e a d  
t i m e  i n  t h e  A l l a n  v a r i a n c e ,  when  t h e  d e a d  t i m e  b e t w e e n  s a m p l e s  
g o e s  t o  i n f i n i t y ,  T h e  v a r i a n c e  d o e s  g o  t o  i n f i n i t y  t h e n .  Or, i f  
you h a v e  N s a m p l e s ,  t h e  p r o c e s s  g o e s  t o  i n f i n i t y  a s  l o g  N .  

W h a t  t h i s  m e a n s  i s  t h a t  t h e r e  i s  d e f i n i t e l y  a l o w  f r e q u e n c y  
c u t - o f f  p a r a m e t e r  w h i c h  h a s  t o  b e  c o n s i d e r e d  i n  y o u r  m e a s u r e m e n t  
p r o c e s s ,  w h i c h  may n o t  n e c e s s a r i l y  b e  a s s o c i a t e d  w i t h  t a u .  

M R .  A L L A N :  I t h i n k  t h a t  o n e  c a n  m a k e  a g e n e r a l  s t a t e m e n t  a b o u t  
t h i s  w h o l e  a r g u m e n t .  The Kalman f i l t e r  c o n c e p t  i s  s t r o n g l y  m o d e l  
d e p e n d e n t ,  a n d  n o  m o d e l  i s  p e r f e c t .  The  f a c t  t h a t ,  in t h e  c a s e  o f  
f l i c k e r  n o i s e ,  we may n e e d  t o  a p p r o x i m a t e  t h e  s t a t e  m a t r i x  w i t h  a 
f e w  t e r m s  d o e s n ' t  b o t h e r  me a t  a l l ,  b e c a u s e  t h e  m o d e l  i s  
a p p r o x i m a t e  a n y w a y .  

W h e t h e r  y o u  a r e  t a l k i n g  a b o u t  w h i t e  n o l s e  o r  o t h e r  n o i s e ,  
i t ' s  a p p r o x i m a t e  a t  e v e r y  .Leg o f  t h e  t r i p ,  a n d  y o u  h a v e  t o  
a p p r o x i m a t e  f o r  f l i c k e r  n o i s e  o r  a n y t h i n g  e l s e .  You h a v e  a f i n i t e  
m e a s u r i n g  s y s t e m  b a n d w i d t h  i n  t h e  r e a l  w o r l d .  You h a v e  l o w  
f r e q u e n c y  a n d  a h i g h  f r e q u e n c y  c u t - o f f ,  s o  t h e s e  a r e  o n l y  
a p p r o x i m a t i o n s  t o  t h e  i d e a l .  I t h i n k  t h a t  e v e r y t h i n g  f i t s  
t o g e t h e r  r a t h e r  w e l l .  

M R .  BROWN: I c e r t a i n l y  a g r e e  w i t h  t h a t .  I n  t h i s  p a r t i c u l a r  m o d e l  
t h a t  A 1  a n d  I h a v e  come u p  w i t h ,  we w e r e  w o r k i n g  e s p e c i a l l y  h a r d  
t o  c o m e  u p  w i t h  a  t w o  s t a t e  m o d e l ,  a n d  t h e r e  h a v e  t o  b e  s e r i o u s  
a p p r o x i m a t i o n s  i n  t h a t .  

I d o  p l a n  t o  h a v e  a s t u d e n t  w o r k i n g  o n  t h i s  t h r o u g h  t h e  
w i n t e r  d o i n g  s o m e  s i m u l a t i o n s  t o  s e e  w h i c h  o f  t h e  t w o  s t a t e  
m o d e l s ,  o r  w h i c h  o f  t h e s e  o p t i o n s  w i l l  w o r k  o u t  t o  b e  t h e  b e s t .  
O f  c o u r s e ,  we a r e  n o t  a b s o l u t e l y  l i m i t e d  t o  a t w o  s t a t e  m o d e l .  We 
t h o u g h t  t h a t  i t  w o u l d  b e  n i c e ,  w i t h  a l l  t h e  o t h e r  a p p r o x i m a t i o n s  
t h a t  go  i n t o  t h e  t h i n g ,  t o  j u s t  k e e p  i t  a t w o  s t a t e  mode l .  




