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"What then," asked St. Augustine, "is time? If no one asks me, I know
what it is. If I wish to explain it to him who asks me, I do not know,"
We have learned a few things since 8t. Augustine, Einstein has taught us a
lot. But still there are a lot of unanswered questions. In particular,
how do you measure time? It intrigues me that we never measure time; we
measure time differences, i.e. the time difference between two clocks. I
know of no way to measure the time of.a clock. I can measure the time of
an event with reference to a particular clock. Another intriguing
question is, if time cannot be measured, is it physical or is it an
artifact? We conceptualize some of the laws of physics with time as the
independent variable. We attempt to approximate our conceptualized ideal
time by inverting these laws so that time is the dependent variable, The
fact is that time, as we now generate it, is dependent upon defined
origins, a defined resonance in the cesium atom, interrogating electron-
ics, induced biases, and random perturbations from the ideal. Hence, at a
significant level, time -- as man generates it by the best means available
to him -- is an artifact. Corollaries to this are that every clock
disagrees with every other clock essentially always, and no e¢lock keeps
ideal or "true" time except as we may choose to define it. Frequency or
time interval, on the other hand, is fundamental to nature; hence, the
definition of the second can approach the ideal. Neoise in nature is also
fundamental. Characterizing the random variations of a clock opens the

door to optimum estimation of environmental influences and to the design

of optimum combining algorithms.
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Let's define some terms[1]: Beginning with a sine wave voltage with
frequency v(t) as the variable frequency output of a precision oscillator,
we may write V(t) = Vo sin(2m v(t)+t), where we assume that amplitude
fluctuations are negligible around Vo’ and where v(t) is the average
frequency from 0 to t. We can redefine this equation with v, being a
conatant nominal frequency and place all of the deviations in the phase,
V(t) = V, sin (2nvo-t + ¢(t)). We then define a quantity

y(t) = (V(t) = v;)/v,, which is dimensionless and which is the fractional
frequency deviation of vw(t) from the nominal value. We can integrate

y(t) to get the time deviation, x(t), which has the dimensions of time. |
From the above we can write the time deviation of a clock as a function of
the phase deviation: x(t) = ¢(t)/2mv,.

why do we have time deviations? We conceptualize two categories:
systematics, such as frequency drift (D), frequency offset (yo) and time
offset (xo); and then random deviations e(t), which are not considered to
be deterministic:

x(t) = x, + ygot + 1/2 Dt? + e(t). (1)

Note, the quadrétic in the D term is because x(t) is the integral of y(t),
the fractional frequency. In Figure 1 we have simulated two systematic
cases: one a clock with frequency offset, and another case with a

negat ive frequency drift. systematics caused by environmental influences
are also very important. Figures 2 through 6 summarize some of the
important systematic influences on precision oscillators. An important
set of systematic deviations are modulation side bands, e.g. 60 Hz,

120 Hz, daily and annual dependences, those induced by vibrations, ete.

The random deviations of precision oscillators can typically be catego-
rized by power law spectra, Sy(f) ~ % where f is the Fourier frequency
and a takes on integer values, i.e. -2, -1, 0, 1, 2[1'2'3’43. Figure 7
shows noise samples corresponding to these different power 1éw spectra and
Table 1 shows the nominal range of applicability of these power law
models, Given a time deviation plot x(t) for the time difference between

a pair of clocks or a clock against some primary reference, and some
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-change to 1 = nr

sample time 1 (see Figure 8 for example), the average fractional frequency
for each interval is the time difference at the end of the interval minus
that at the beginning of the interval divided by t. We can thus construct
a set of discrete frequency values over such a data set from this time
deviation plot. We can calculate a classical standard deviation for these
values, but one can show that for some kinds of power law spectra
encountered in precision oscillators that the standard deviation is
divergent[5], i.e., it does not converge to a well defined value, and it
is a function of data 1ength[2]. Hence, the standard deviation should not
be used for characterizing clocks. An IEEE subcommittee has recommended
Sy(f) in the frequency domain and a measure, oyg(T) in the time domain[1].
The latter has come to be called the two-sample variance or the Allan
variance. The convergence of Oy(T) has been verified[1’2'3'u3 for

the power law spectra of interest in precision oscillators. It is defined

[11,

as follows

oyz(t) - %-(Ay)2> o c (2)

where Ay is the difference between adjacent fractional frequency
measurements each sampled over an interval 1 and the brackets <

indicate the infinite time average or expectation value.

A pictorial description is shown in Figure 9 for a finite data set. A
data set of the order of 100 points is quite adequate for convergence of
Oy(T), though of course the confidence of the estimate will typically
improve as the data length increases[6]. Given a discrete set of stored
data, the value of 1 can be varied in the software[7]. If T, 18 the data
spacing for the stored data set, }&, from the measurement system, one c¢an
o by averaging n adjacent values of yito obtain a new
fractional frequency estimate with sample time t as input to Equation (2),
Hence, in a very convenient way one can calculate Oy(T) as a function of
1, which will be shown to be very useful in a moment. For a finite data
set, Equation (2) then becomes

M+

5 . 1 1-2n . — 2
o () = StwTEm kzl Ygen = Yi) » 230d (3)
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. 1 . :

2,y o~ 1 - - :

o (1) T ———— ) (Xpyon = 2Kpym * X,)° (4) ,
y 2¢°(M+1-2n) K kren Tk m Tk

where the y; are average fractional frequencies averaged over T = nt,,
starting at k, and the x, s are the discrete time deviation measurements, | . :

K —_
i=1

Equation (3) is obtained from a first difference on frequency, and l ) A
equation (4}, from the second difference on the time; they are mathemati- o
cally identical, which gives us the option of using frequency or time '
data. o l

For power law spectra, p is constant for a particular value of a, where
oy2(r) ~ t". The relationship of the spectral density, Sy(f) - 2,

exponent a versus y is pu = —a-1 (-2< o £1) and u = -2 (acl).

For example, oy(r) is proportional to 17172 (which is typical) for cesium,

rubidium and passive hydrogen; then u has the value of -1, and hence o has

the value of 0 (white noise frequency modulation). This is the classical ' ' 1
noise exhibited by most atomic clocks for 1's beyond a few seconds and in

this case oy(ro) is equal to the classical standard deviation. Fortu-

nately for most cases where 1 £ 1 second the relationship py = ~a-1 is

applicable.

We have ‘an ambiguity at u = -2; we cannot tell whether we have flicker
noise phase modulation (PM) or white noise PM, We can avoid this problem
by realizing that in this region oy(r) depends on the measurement
bandwidth[2'3]. One can construct a variable software bandwidth, f by

s!
[8'9]. In any measurement system a hardware

realizing the following
bandwidth, fh, exits through which we measure the phase or the time
difference between a pair of clocks; define T, = l/2nfh. In other words
Th is the sample time period through which we sample the data. If we
average n time or phase readings, we increase the time pericd to nt, =1

But 1, = 1/2nf

S.

where fs = fh/n, i.e., we narrow the effective bandwidth,

5 5
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fs, in the software by n. In other words fs = fh/n gets smaller as we
average more values; i.e. increase n (1 = nTO). We can therefore
construct a second difference composed of time deviations so averaged, and
then define a modified oy2(1) that will remove the ambiguity through

bandwidth variation:

2 1 N-3n+l n+j 2
Mod.o (1) & I g (x, 2%, .+ X.) (5)
y 212n2(N—3n+1) j=1 1=3 i+2n i+n i

where N = M+1, the number of time deviation measurements available from

the data set. And now if Mod.oyg(T) ~ ¥, then p'= ~a-1 (15 a $3)09101,

We typically employ Mod.oy(r) as a subroutine to remove the ambiguity if
Oy(T) ~ 17V pecause the u° dependence only approximates that given by
equations (3 and 4) for o <1. But for a = 2 and 1, p /2 exactly equals
-3/2 and -1 respectively, providing a clean differentiation between white

noise PM and flicker noise PM.

Table 2 illustrates why one should not use the classical standard
deviation to characterize clocks. For the different kinds of noise
processes we list the classical standard deviation of the time deviations
and the classical standard deviation of the fractional frequency
deviations as a function of Oy(T) (the square root of the Allan variance).
The divergent nature of either classical standard deviation is apparent,
and even for classical white noise FM the standard deviation is apparent,
and even for classical white noise FM the standard deviation of the time

diverges as the square root of the data length i.e. the number of samples
nt2J,

Using Oy(T) or MOd.Oy(T) we can characterize typical power law processes.
We then have the opportunity of determining optimum estimates of
values by employing the statistical theorem that the optimum estimate of a

white noise process is just the simple mean.
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For example, consider the very common and very important case of white
noise FM typically found on the signals from cesium standards, rubidium
standards and passive hydrogen masers. The optimum estimate of the
frequency is the simple mean frequency, which is equivalent to

(xN ~x1)/MTO. It is still all too common within our discipline to see our
colleagues erroneously determining the frequency for these kinds of i
oscillators by calculating the slope from a linear leasts squares fit to |
the time deviations and quoting the standard deviation around that fit as
a measure of the clock performance. There are three problems in
proceeding this way. First, the frequency estimate is not optimum in a
mean square error sense and is equivalent to throwing away about 20% of
the data, increasing the cost in the case of a calibration. Second,

the standard deviation diverges as the square root of the data length and
third, the standard is significantly dependent on the filter (linear
leasts squares) as well as the clock deviations. On the other hand such a
filter can be useful for assessing outliers. The optimum "end point"
method outlined above has the risk that if either of the points is
abnormal, i.e. the model fails, the result will, of course, be adversely
effected, 80 such a filter is useful to assess whether there are, outliers
-— paying especial attention to the end points.

There are other usefﬁl, and maybe not so obvious, optimum estimators at
the conclusion of a data set: (1) Given white noise PM, the best time
error estimate is the simple mean of the time deviations, the frequency
estimate, then, is the slope from a linear least squares fit to the time
deviations, and the frequency drift, D, is determined from a quadratic
least squares fit to the time deviations per equation (1l). (2) Given
white noise FM, the optimum estimate of the time 1s the last value, the
optimum frequency estimate is outlined in the previous paragraph and the
optimum frequency drift estimate is from a linear least squares fit to the

frequency. (3) Given random walk FM, the optimum time estimate is the

last value, and optimum frequency estimate is obtained from the last slopé

of the time deviations, and the optimum frequency estimate is from the
last slope from the time deviations, and the optimum frequency drift
estimate is calculated from the mean second difference of the time

deviations. Caution needs to be exercised here for typically there will
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be higher frequency component noise in a real data stream, such as white
noise FM, along with the random walk, and these can significantly
contaminate the drift estimate from a mean second difference. If random
walk FM is the predominant long-term, power-law process, which is often
the case, then the noise can be handled by calculating the second
difference from the first, middle and end time deviation points of the
data. The flicker noise cases are significantly more complicated, though
filters can be designed to approximate optimum estimation [11'12'13]. In
the limit as the data length increases without limit, the time is not
defined for flicker noise PM, an the frequency is not defined for flicker
noise FM. This has some philosophical implications for the definitions of
time and frequency unless some low frequency cutoff limits exist. If
significant frequency drift exists in the data, it should be optimally
subtracted from the data or it will bias the long term values of oy(r):
o (0 = 5% . S (6)
Once the power law spectra are deduced for a pair of oscillators, then one
can also develop an optimum predictor. Table 3 gives both the optimum
prediction values for the various relévant pure power law spectra, as well
as, their assymtotic forms. Special forecasting techniques must be used
-for optimal prediction when combinations of these processes are present.
To illustrate how these concepts relate to real devices, Figure 10 shows
a Oy(T) diagram for some interesting state-of-the-art oscillators, and
Figure 11 shows the rms time prediction errors for the same set of
oscillators.

In conclusion it is clear that classical statistics does not allow
characterization of common kinds of random signal variations found in
precision oscillators., The two-sample or Allan variance provides an
efficient and convergent measure of the power law spectral density models
useful in characterizing most of these oscillators. Once characterized we
can calculate optimum time and frequency estimates as well as predicted
values, Characterizing the random variations also provides near optimum
estimation of systematic'effeots, which often cause the predominant time
and frequency deviations. For example, if we wanted to optimally

determine the temperature dependence with the temperature set at two
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different values, we would set at one temperature and measure the
frequency against a reference for a time T, corresponding to the 1 for
the minimum Dy(T) value. We would then change the temperature to the |
other value and repeat the measurement with the same criteria and note the

resultant Ay between the two optimally determined frequency values. If

|-

these two steps are repeated several times, an arbitrarily good precision

is achieved and is approximately given by o )/vP, where P is the number

y{m
of Ay values obtained from switching back and forth. Knowing the
characteristics of both the random and the systematic deviations of i
precision oscillators clearly is useful to the designer, the planner, the

user, as well as the vendor. |
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Figure 1.
offset and

FRACTIUNAL FREQUENCY LKROK

Frequency, y(t), and time, x(t), deviations due to
to frequency drift in a clock.
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OSCILLATOR
- Qu RB H H{pas) CS
1074
107"
1874

18 -
18" " I

TEMPERATURE SENSITIVITY / des K

Figure 2. Nominal values for the temperature coefficient for the
frequency standards: QU = quartz crystal, RB = rubidium gas cell,
H = active hydrogen maser, H(pas) = passive hydrogen maser, and
CS = cesium beam.

OSCILLATOR

o1 OU RB H H(pas) CS

1 '-W

1 '-lz

MAGNETIC FIELD SENSITIVITY / G

Figure 3. Nominal values for the magnetic field éensitivity for the

frequency standards: QU = quartz crystal, RB = rubidium gas cell,
H = active hydrogen maser, H(Pas) = passive hydrogen maser, and
CS = cesium beam.
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| OSCILLATOR
4 QU RB H H{pas) CS

REPRODUCIBILITY

Figure 4. Nominal capability of a frequency standard to reproduce the
same frequency after a period of time for the standards: QU = quartz
crystal, RB = rubidium gas cell, H = active hydrogen maser,

H(pas) = passive hydrogen maser, and CS = cesium beam.

‘ OSCILLATOR
1o~? Qu RB H H({pas) CS
187"
154”
182 "
1872
1671

ABSOLUTE ACCURACY

Figure 5. Nominal capability for a frequency standard to produce a
frequency determined by the fundamental constants of nature for the
standards: QU = quartz crystal, RB = rubidium gas cell, H = active

hydrogen maser, H(pas) = passive hydrogen maser, and CS = cesium beam.
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OSCILLATOR
g Qu RB H H{pas) CS
18
18"
107
15

18 I
lﬂ-lé

FRACTIONAL FREMAUENCY DRIFT /7 DAY

Figure 6. Nominal values (ignoring the sign) for the frequency drift for
the frequency standards: QU = quartz crystal, RB = rubidium gas cell,

H = active hydrogen maser, H(pas) = passive hydrogen maser, and

CS = cesium beam.
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Figure 7. Simulated random proceases commonly occurring in the output signal of atomic clocks.
Power law spectra S{w), are proportional to w to some exponent, where o is the
Fourier frequency.
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Figure 8. A simulated time deviation plot, x(t), with indicated ;sample
time 1 over which each adjacent fractional frequency, Yy, is measured.

The equations are for the standard deviation and for the estimate of o,(1)
for a finite data set of M frequency measurements. It is often the case
that the standard deviation diverges as the data length increases when
measuring the long term frequency stability of precision oscillators,
wehereas Oy(T) converges.
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LOG X (TAUp)

RMS TIME DEVIATION

Rb GAS CELL
-6 1 ps
Cs
| (HIGH
=7 1 | : PERF. )
QUART
..8 ) A
PASSIVE H MASER

-g ¢ 1 rns

,4-—,——f"’ Hg ION
..IE#
-11%
-1 l ps 6 H=z

ACTIVE H MASER
1% 1 2 3 4 5 B 7

LOG TAUp (seconds)

Figure 11. From the frequency stability characterization shown
in Figure 10, optimum prediction algorithms to minimize the time
error can be obtained. Based on optimum prediction procedures
the BMS time prediction error for a prediction interval 1. can be
calculated for each of the oscillators shown in Figure 10, and
the corresponding values are plotted in Figure 11.



Table I.

Applicable Oscillators and Range of Applicability

Typical
o, Noise Types Cs H-active H~passive Qu ' Rb
2 White Noise PM £ 100 s < 1ms
1 Flicker Noise PM £<1s
0 White Noise FM 210 s 100 8 <15 107 58 2 1 >,1‘ s
-1 Flicker Noise FM  » days 210" s > days >1s >10% s
-2 Radoh Walk FM 2 weeké 2 Qeeks 2 weeks 2 hours ' 2 days
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Table II

Typical
Noise
Types

wWhite Noise PM

Flicker Noise PM

White Noise FM

Flicker Noise FM

Random Walk FM

Classical
~ Standard
Deviation
of x

Classical

Standard

Deviation
of v

1+ 0. (1)/Y3
(congtant)

undefined

undefined
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Table III.

Typical
Noise
Types

White Noize PM
Flicker Noise PM

White Noise FM
Flicker Noise M

Random Walk FM

Optimum

Prediction

x(1.)

p

rms

-

oy(T)//3

Lnt

0y (1) 3int,

Oy(T)
Oy(T)//ER?

ay(t)
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QUESTIONS AND ANSWERS

PETER KARTASCHOFF, SWISS PTT:

Dave, 1 have a question which T will direct to you and to Gernot Winkler. We have
measurements and we have recommended designations such a Y, F sub Y, sigma sub Y
and so on, Ten years ago we had a recommendation in the CCIR, International Radio
Consultative Committee, with an associated report which explains all the terms
which you have so well presented here. Everybody uses them, Fifteen years ago
there was a subcommittee of the IEEE which recommended these measurements. Do
you, or anyone here, know if there is any other published international
recommended standard, IEC or IEEE besides the CCIR recommendation? As far as I
know, tho¢ CCIR recommendation still stands alone and I do not know what the IEEE
is doing or what the IEC is doing about this.

MR. ALLAN:

As far as 1 know, there is nothing new beyond those that you have mentioned.
There is an IEEE subcommittee in existence, but it is not active. I know of no
other committee.

A COMMENT HERE BY MR. WINKLER, NOT INTO THE MICROPHONE AND NOT DECIPHERABLE.

MR. BEARD:

You mentioned environmental effects and such things as that on characterizing
these clocks., Aren't the properties of the measuring system with which you make
these measurements also important?

MR. ALLAN:

I really appreciate your mentioning that. Very often a process, in fact the
millisecond pulsar is an example, is a measurement of the measurement noise, We
think that we cannot get the real millisecond pulsar, This is a very good case in
point, because all you are seeing is the measurement system. In many applications
that can be a problem, This goes back to the point that Dr. Winkler made: one
should make your phase or time measurement system as good as possible so that you
don't have measurement noise contamination.
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