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Abstract 

A test bed is described for the evaluation of tirnrscale i~lgorithms. Test results for 
two algorithms (AT1 and KAS---I) using simulated d:lt,a are prescntctl. Both algoritl~rrls 
are optimum in the sense that, with the approp~iat~e selection of  clock weights, they 
are able to produce an output with minimum squared time prediction error in steady 
state for ensembles of clocks whose noises are all proportional to thr? noise of one of 
the members. The KAS-.I  algorithm is also optimum during kriowll transients s~lch 
as startup, utilizes robust outlier cletection, and bas the property of time colltinuity. 
As a result of these improverrrents, KAS-1 is rnore snited to autorrlated operation. 
Neither algorithm is optimum at  all sampling tixrles for r.nsernbles of clocks having 
radically different noise processes. The KAS-1 algorithxu n l l d  a clock sixnulnt,or, both 
representing a new Kalman-filter approach, axe documented 1it:rein. 

INTRODUCTION 

The Mastcr Clock Upgradc Program at  USNO is a SPAWAIt- anti IJSNO-funded projc,c.l which tasks 
NItL and USNO to  procure, monitor, and cvaluate advancrd frt~lriericy standards (triipped mercury 
ion devices and hydrogen masers) currently under developmerit t)y otticrs; devise arid tvst a low- 
noise time-difference mcasurernent system for all the cesium rlorks arid hydrogen rnasc,rs at  USNO; 
and develop a tcst bed for algorithms designed to  gclncrate an nptiml~m t,irriescnle['j. I n  order to 
accomplish the latter, a software package is being developed hy XRT, that will he an int,cgral part 
of the data  collrction and marlagcment system at IJSNO. The cur rc~~t ,  vt~rsion of the snfiw;irt: that  
comprises the tcst l e d  is writtcn in "Rocky Moun hain Hasic" for thp TTP (Hvwlctt Pack:jrd) st,rics 300 
computer. The next vcrsion of the test bcd package will hc 1 1 1  f ho stnndar(1 "C" l a r i g ~ ~ a t ; ~  and will bc 
less rriachine dependrnt. In addition to t,hc standard clock analys~s tools, the  t m t ,  t ) c ~ l  will allow two 
algorithxns to  run simultaneously using thr  sarne data, which rnity 1,o rral or s i rn i i l a t (~ j .  T r l  t he  case of 
the latter, thr: output of an algorithm is compared to t,ruth, where trilt11 is known Ly defin~tiori. 

As a joint project, USNO and NRL are making complementary coutrihi~tiar~s to the algc-)rithn~ t,c,st bed. 

NRL's contribution is the experience in cicveloping automatccj clock systems. USNO's contribution is 
thc experience of arid knowledge about maintaining a timcscalc. 
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NRL is developing a nurnber of automated clock systems for field use designed t o  have the following 
features: 

1. the systems arc fully automated clock ensembles with real-time oui,put; 

2. they can be steered to  UTC (USNO) automatically via GPS;  

3. their timescale algorithms permit the easy addition or deletion of clocks; and 

4. the algorithms generate a timescale more uniform t,han any single clock in the enserntllc. 

For our purposes, we will define a timescale as a multifaceted procedure defining the scale of time by 
means of an algorithm that  usually entails filtering or smoothing the data  from two or more clocks or 
clock ensembles, and possibly steering one or more of the clocks toward thc cnsernble o r  stccring them 
or the ensemble itself toward a more stable reference. We define a clock erlscrnble to  be a procedure by 
which a single output is obtained from two or more clocks. Generally an ensemble performs 'tlctter than 
its individual members. For a set of N clocks with equal noise processc:s, an output can be obtained 
that  is JN more stable than a single clock, assuming the absence of ir~t,c,rcnrrelations and systcrnatic 
errors. For a set of clocks whose noises are not proportional, the output is rnorc complicated, as we 
shall see. 

RESOURCES 

As mentioned above, the test bed 11scs both simulated and real data. One source of the lrzt,tcr is the 2- 
picosecond-noise time measurement system developed by NItL for USNO that  is connected to at least 
twenty high-performance cesium clocks, twelve hydrogen masers, and three rnurt:ury stored-ion devices 
(SIDs). The measurement systerrl incorporates a phase--different.c. rrlc,as~lrcment subsystem dcvrlopcd 

by the first author while a t  N B S [ ~ ] .  The cesiums and rnasprs provicie phase rlifferrncc rr~casurements, 
while the SIDs give frcqucncy measurements. This mix nf rnc.ijs~~rcxrient types, n c.hall(~ngc to most 
ensembling proccdurcs, is handled quite naturally by a Kalman-filter approrzth Trl ;~ddition to these 
new data,  there is available the old USNO database o l  scvcral ycars fro111 two rrlasers and about fifty 
cesiums. 

NRL has available for this clfort a database of phase measurerricnt,~ from three masers, a t  Ica:st, ten 
(some highbperformance and some GPS-type) cesiurns, and several rubidiurn clocks. Tn addition, NRL 
has a means of measuring thc IJSNO Master Clock to  the 50-picosecond l c v ~ l  via the carrier lrcq~lcncy 
of a local television station using a system similar to  one dcviscd i n  ~ r a n c e [ ~ ] .  This precise rncthod 
of remote measurement will permit clocks several miles apart to  be corr~~)arcd and allow the potential 
ensembling of clocks a t  both NRL and USNO. 

The clock simulator cmploycd in this test bed is a Kalman-filter type: int,roc!liccd in the next scct,ion. 
Simulated data  have several advantages over real data: 

1. any amount of data  over any length of time can he generated; 

2. data  free of systematic errors or contairlirlg specific types of crrnrs can be producctl; 

3. any nurnbcr of clocks or combination of clock types can be rnodellctl; and 

4. most importantly, t ruth is known by definition. 

To illustrate the latter, consider the simulation of a single clock, which involves the gc~ncration of a 
series of numbers that  represent the accumulation of phast:, 11su al l y nvcr equal tirrle intervals. The 



numbers are produced with a clock model in mind and against which they may be vcrificd st,at,istically. 
To generate phase-difference data,  two or more clocks are sirnulat,ccl simultaneously; one clock is then 
selected as the reference and its phase value at each measurement step is subtracted from the other 
clocks. 

THE ALGORITHMS 

The first algorithm tested was AT1, developed at  N I S T [ ~ I ' ~ .  The source codc was provided by NBS 
(now NIST) in 1987. It is an ad hoc procedure designed for a steady -state enscmhle of clocks rrianifest- 
ing the types of noise typical of cesium clocks. Exponential filters are liscd in t,hc frt:quericy estimation 
and weight calculation. 

The second algorithm, called the Kalman Aiding Sourccs Algorithm (KAS- I) ,  developed in 1987 by 
Ball Aerospace for NRL, uses Kalman-filter methodology. Thc KAS-I algorithm was first employed in 
an automated clock ensemble a t  the Mastcr Control Station of the Global Positioning Systcrn (GPS) 
a t  the Consolidated Space Operations Center (CSOC), Falcon AFR ;tntl was l~rt~st:r~t,ccl at the Third 

International Time Scale Algorithm Symposium held i n  Torirlo in 1088['1. This paper provides a more 
complete description as well as operational ant1 simulated perforrriar~ce data. The IlAS -1 approach is 
now being tested by NIST for use with AT1 and their results are drsrrihcd in t , l ~ c l  paper 1)y W(,iss and 
Wcisscrt in these same proceedings. The KAS-I algorit,hm was the first sr~cccssrul use of a, ICalrrirtn 
filter in connection with clock ensembles, and this approacli has bern cnhancctl for use at, IJSNO. 

KALMAN APPROACH T O  SIMULATING AND ENSEMBLING 
CLOCKS 
Background 

The ensembling method employed in KAS-1 uses orie clock to for111 all i1ii1,ial rst i ~ ~ ~ : i t , c  of t imc a n d  ilscs 
each additional clock to  improve or 'aid' the initial estimate. 'l'he same approach is used in the NIST 
AT1 timescale. The work described here improves and extends thr. AT1 algorit hrr~ i r ~  sc~vc~r;tl arclas: 
optimum filtering of all clock types, autorriatic startup arid clock aclclit,ion, robust out,lirr procrssing, 
time and frequency step detection, real time clock parameter estimation, and adaptive modelling. 

The KAS-1 algorithm utilizes Kalman filters to  provide the necessary state estirriatiori arid forecastirig 
functions, resulting in estimates which are optimum in the minimurri stluart:cl-crror srnst: t)nt,h in steady 
state and during transient conditions such as turn-on. Any mix of clocks (:an t)c includcd provided that  
the correct models and covariances are used. The use of the Kalnlarl filter is a cornp1~1,;ttional dcvice 
and any other method of minimum squared-error state estimatiorl bascd or1 thc, s;irrlc a s s~ i rn~ t ions  
and system dynamics would produce an identical result. 

In contrast, the NIST AT1 algorithm uses fixed length exponential filters t o  pc:rforrn f r rqu~ncy es- 
timation. It is optimum only in steady state and requires external (:lock c;~lihrat,inn for startup and 
addition of clocks to  the ensemble. 

Definition of the KAS-1 Enserrlble 

Each of the N clocks provides an independent forecast of the tirrle o f  c:loc:k r, thc rcference clock, with 
respect to  the ensemblc at time t + 6. 'i'hese individual forecasts are callrd L1~riniit,ivc' forecasts of the 
reference clock time. The primitive forecast of the time of the ref(lrthr~cc (:lock nL 2 + 6 using clock i is 



where u;,(t + 61t) is the forecast of the time of clock i with rcspect to  the ensemble a t  time t .+ S based 
upon the true state of clock i with respect t o  the ensernblc a t  time t and uri(t + 6)  is the clock r us. 

clock i time difference. 

The KAS-1 algorithm utilizes the natural definition 

The weights, a;(t) ,  may be chosen in any way subject only to the restriction thul the sum 01 the weights 
is one. In the absence of noise, the enserrible definition is deterministic. However, in the presence 
of clock and measurement noise, the computational problem is to find the minimum squareci-error 
estimate of the time of the reference clock with respect to  the cnscxxlblc. 

Cornputat ional Methodology for the KAS-1 Algorithm 

One method of estimating ensemble time is to  use the definition of Eq. 2 directly. Taking the estimate 
of both sides, one obtains 

The estimate of the time of clock i with respect to the cr~scrrit~lc ;it, t,irric: I, + S t~ascd on rricas~~rc:rr~cr~ts 
through time t ,  the first term in the square brackets on the riglit sitlc of Eq. 3, is calculatctl from the 
results of the last computation of the ensemble. Thus 

where x is the phase before perturbation by white phase noise, y is the frequency aricl w is the f r ~ ( : ~ u c n c ~  
aging. The second term in the square brackets on the right side of Eq. 3 is the rninirnurn squar1:-error 
estimate of the clock pair difference state. This estimate is easily corr~putetl using the appropriate 
Kalman filter. 

Kalman Filter for Computing Clock Difference S tat,c?s 

The n parameters which are to be estimated are formed into an n dimensional state vector ?(I: ) .  The 
system evolves from time t t o  time t + 6 according t o  

where the n x n  dimensional state transition rriatrix @ ( S )  ernbodies the systcrr~ rnotlcl, the n clirncnsional 
vector rZ(t + Slt) contains the noise inputs to  the  syst,cm during t h c  intcrval from t to t + 6, and the 
n dimensional vector p'(t) contains the control inpi~ts  rriaclc ;it, t,irnc 1. The st,at,c: transition rriat,rix is 

assumed to  depend on the length of the interval, but not on the origin. Each element of Z( t  + Sit) 
is Normally distributed with zero mean and is uncorrelated in time, thereby generating a random 
walk in the elements of the state vector. The observation vector Z( t )  is described b y  the measurement 
equation 

Z(t) = H(t)x ' ( t )  4- v'(t) .  (6) 

The r observations made a t  time t are related linearly to the n elerrients of the state vt:ct,or by the r x n 

dimensional measurement rnatrix H ( t )  and the r dimensional white noise vector v ' ( L ) .  Kalrrlarl and 



Bucy defined a recursive procedure for estimating the next statc, which re quirt:^ the rnean squared- 
error of the estimates from the true state to be minimum. 

The error in the estimate of the state vector after the measurcmcnt a t  time t is x ( t l t )  - - 2 ( t )  arid the 
error covariance matrix is defined to  be 

The diagonal elements of this n x n matrix are the variances of the estimates of the corriponents of 
2(t) after the measurement at time t. Next, the error covariarlce matrix just prior to  the measurement 
a t  time t + 6 is defined as 

Finally, R(t) is the covariance matrix of the measurerrler~t rioise and Q(1+ h i t )  is the covariarlce rnatrix 
of the system noise generated during the interval from t to  t  + S 

Q( t  + 6 t )  :- E [ ~ ( t  -1-  61t)S(l + sit)'] . 
The error covariance matrix evolves according to  the system model 

The new estimate of the state vector depends on thc. prcvious rstimatc a n d  the current, nicasurernent 

where the gain matrix, K(t + 6 ) ,  deterrriines how heavily thc new measi~rcrr~cr~ts are weighLt:d. The 
optimum or Kalman gain, Kept, is determined by minimizing t,hc "stlurzre of tlir I(,r~gt,h of the error 
vector,"i.e., the sum of the diagonal elements (the trat:c) of the error covariarlce matrix 

Finally, the updated crror covariance rnat,rix is 

where I is the identity matrix. If the optimum filter gain is used, Eq. I I  rt:tluces to a sil-nplcr form: 

Equations 11 through 15 define the Kalmari filter, and so definccl i t ,  is ltri  optimal cst irriator in the 
minimum squared error sense. Each application of thc Kiilrrinn recursinn yic,ltls ti11 estirrlate of Lhr state 
of the system which is a functiori of the elapsed t>irric> sir~ce the last filtrr uptiate.  Updates may occur a t  
any time. Tn the absence of observations, the updates are called f(orrrasLs. Sirnultaneo~ls obscrvations 
may be processcd in parallel or srrially, in any ordcr, i f  the measuremrrit, rioise is uncorrelatcd with 



the process noise. The interval between updates, 6, is arbitrary and is specifically not assumed to  be 
constant. 

The estimates of the clock states relative to  clock r are obtained from N - I independent Kalman 
filters. The four dimensional state vectors are: 

Every clock pair has the same state transition matrix 

and r matrix 

The system covariance matrices are: 

where the clock pair spectral densities are the sum of the individual contributions frorn each of the 
clocks: 

s i r  Ez S' +ST. (20) 

The white phase rricasurcment noise is given by the mea~urerricnt~ model: 

where each time measurement is described by the same 4 x 1 row matrix 

The updated difference states are givcn by Eq. 12, but only the time statc is uscd in the following 
steps of the ensemble calculation. 

Calculation of the Weighted Average of the Times of the Clocks 

Although it is not ncccssary, a Kalman filter is used to  ca lc~~la tc  the 'weighted averagc' o f  the N 
pirnitive estimates of the time of clock r.  Kalman filtcrs arc normally applied to clynaniic systems, 
but they are equally relevant to  the static problem of 'averaging' the N estirnatcs of the time of' clock 



r a t  sample time t .  The choice of the Kalman filter methodology is motivat,cd by the fact that  it 
deals with the clock weights in an  easy arid natural manrier and autorrirttically prnvidcs scale factors 
for use in outlier deweighting. The deweighting scheme is similar to one developed by ~ e r c i v a l [ ~ ]  far 
maximum likelihood estimation, but it has been adapted for use wit,h t,he Kalman mct,hodology. It is 
desirable for the resulting estimator (with outlier deweighting) to be both cfi'rcient and robust. For 
certain types of outliers, the rnethod used here is both more efficient and morc robust than rejection 
rule methods. 

The state transition matrix is a scalar and is equal to  onc since the systcl-n does not evolve t)ctween 
'observations'. The 'measurcment' model is 

where the random shocks v , ( t )  have variances mT(t) and arc rlst:cI t o  set tllc wcigt~t,s of the clocks. For 
example, v , ( t )  ---- v ( t )  independcnt of the clock nurnbcr produces eql~al weighting, On t,hc other hand, 
setting vi(t) equal to  the estimated time prediction error of clock i since the last crisernLle calculation 
produces an  ensemble with minimurn time prediction crror. Note that  t,11(: latter operating condition 
is not necessarily the best since the clocks may not be pcrf(:ct,ly modeled. 

It is possible to  solve for the Kalman gain in closed form: 

llowevcr, the full Kalrnarl recursion is rrlore suited to  thr  clcweighting nf nut liors. Since a scalar is 

being estimated, !D = H =. 1, Q = 0, and R. = o;"(t). In ordrr to tio\veight ui~t,licxrs, a robust initial 
guess is required for the time of clock r with rcspclct to the ensernt)lr aftclr the rnensiiremc~r~t, a t  time 
t + 6 .  Thc median' of the available estimates is a good choice sincr i t  is rlot unrlilly afYc,c.t,c~cl by outliers. 

This estimate is subsequently refined by using the information in t t i ( ,  rcrrlairling priniit,ivt, estimates. 
The primitive estimates are sorted according to their deviation f r o r ~ ~  the rne(1ian so 1,11at, clock I ( k )  
is the kth nearest the median and X(1) is the rnedian. '1'0 st,art Llie Ilalr-nnn rrcursiorl ore  needs to 
initialize the state and the covariance matrice.;. Having just corrlpleted the rs t i~nntc  o l  the e n s ~ m h l ~  
time for the measurements taken at, tirrie t,  the enscmt)lc calculation fnr t i r l ~ c ,  t + S corrlmcnccs by 
setting the initial estimate of the time of clock r ws. the ensrrnblc c~~ur t l  to the 'prirnitivc. estimate' 
using clock I(1).  The starting point is importjarit only for outlitlr dowcighting. A 'rot)usi,' initial 
estimate for the time of clock r is required arid using one of the prirr~it ivo (,stirnates avojcis t~iasing the 
final estimate. The first estimate milst, be robust because i t  cannot be cleweigl~t,t~cl. This irrlplies no 
loss of generality since it is not possible to detect an o u t l j ~ r  h o1i1y one clerk arid i t ,  is riot possible 
to assign responsibility for an outlier time diffcrencc. measurement wir 11 or114 t h o  clocks. l'ha t i s ,  t ticrc 
is one more cycle in the Kalrrlarl recursion than is r~t~c~tled for outlicr tit.\vc,igl~t 111:: The recursion tlcgir~s 
by setting the initial state estimate: 

'When the number of points is odd, the nuinber of ohservatiorls larger t h a n  t h e  medinri equ'lls tlic nnmher of 
observations smaller than the median. When the number of observrztiorls is cvcn, the nledir~~l  is olle of t l ~ c  two central 
observations. Other definitions of the median are sonletirrles used. 



The covariance matrix prior to  processing the measurement of clock I ( 2 )  is 

and the optimum Kalman gain is 

At  this point in the calculation, the standard Kalman methodology must be modified to account 
for the possible presence of outlier observations. If primitive estimate l ( 2 )  does not come from the 
distribution included in the physical model, then i t  should not be usctl to determine the Kalrrlan statc 
estimate. In ordcr to preserve the continuity of thc statc estimates, measurerncnt,~ should not be 
rejected precipitously, rather the Kalman gain should be reduced as the measuremerlt dcparts from 
expectation. A non-optimum Kalman gain is calculated from 

where 

is Hampel's .rCI function and 

The scale factor, s2, is discussed later. The second step in the Kalrx~an recursion is completed by l~sjng 
the modified Kalman gain to  calculate the updated covariance matrix according to the forrnula for 
non-optimum Kalman gain 

and to  calculate the new estimate of the time of clock 1 with respect to  thc c:nscrnblc 

The recursion continues in this way until all the measurements are processc:cl. The cnmputatic~n for 
clock I ( j )  starts  by setting 

The first time the recursion is performed, each of the  constant,^ sj is set equal to the maxirnurn of  the gj. 
This prevents the high noise level of the  median from causing a very quiet clock to be downweil:hted. 
Next, the computation is repeated setting the initial estimate of the tirr~c o f  t,he reference with rt:spect 
to  the ensemble equal to  the primitive estimate closest to the result of the  p rcv io~~s  computation and 
setting s j  equal to the second largest uj or its own prediction crror, whichever is larger. Thc  rcc~~rs ion 
is repeated until each estimate is processed using the a; of the corresponcling clock. If any of the 
clocks were downweighted in this process, then the new estimate of the tirrle of clock r with respect 



to  the ensemble is compared with the previous estimate and the process is rcpcated until thc change 
in the estimate between iterations is negligible. When there arc no outlit:rs, this rec~lrsivc solution is 
identical to  Eq. 3. In the presence of outliers, i t  is still a weight,c,d average of the estirnatcs frorn the 
individual clocks. The weights of the clocks are given by 

where Kkl) - 1. To preserve the reliability of the ensembl~,  nric usually limits the weights of each of 
the clocks to some maximum value, a,,,. A dewcighting factor, K ,  rrlay be calculated to  act:ornplish 
this goal by starting a t  index I ( N )  anti proceeding to index I(1) so that  KK' are new weights which 
do not exceed the limit. Each time thc Kalman recursion is uscd t o  clstimatc t hc tirne of clock r ,  the 
previously calculated K is used. The process rapidly converges to a st,able val~~c:. 

Finally, the times of the remaining clocks are computed from t,he time of clock s and thr: estimated 
time differences. Thus 

Ca lcu la t ion  of the F r e q l ~ e n c y  a n d  Frequency Aging Statcs 

The time of clock i relative to  the ensernt~lc is used as input to a Ki1lrrl;in filter that, (:stirnates thc 
frequency and frequency aging of clock i relative to  the ense1111)le. Tliis filtcr rises the statc t,rarisition 
matrix of Eq. 17. It is assumed that  the enscrnble is so largc that  its cnntrihr~t,ion to the noise can be 
accounted for to  first order only. Based on this assurrlption of a largc c,r~scmble, thc s y s t ~ m  covariance 
matrix is: 

Qie(t + Slt) = Qi(t + 611). (33) 

and r 1 - a i ( t )  1 - ai(t)  0 (1 1 

1 0  0 0 1 1  

The change in r from the case of a single clock or clock pair rcflccts the fact, t,hat each clock is a 
member of the ensemble with respect to  which it is measured. 

The measurement model is noiseless since t h e  calculated tirrics of' the N clocks are uscd as pseu- 
domeasuremcnts. This procedure guarantkes that  the Kalrrlarl filter rcproclllces the phasc clstimates 
obtained directly from the cnsernble definition while simult,ancuusly estir-nat,ing consistent values of 
the frequency and frequency aging. 

Adaptive Modelling 
P a r a m e t e r  E s t i m a t i o n  

A variance analysis technique compatible with irregular observations has 1)cen devc~o~)c:cl[~]. The vari- 
ance of the innovation sequence of the Kalman filtcr is analyzed to provide estirriat,cs of the pararricters 
of the filter. The result is 



Like the Allan variance analysis, which is performed on the unprocessed measurements, the innovation 
variance analysis requires only a limited memory of past data. However, the forecasts provided by the 
Kalman filter allow the computation to  be performed a t  arbitrary intervals once the algebraic form of 
the innovation variance has been calculated. Adaptive modelling begins with an approximate Kalman 
gain, K. As the state estimates are computed, the variance of the innovations on the lcft side of 
Eq. 35 is also computed. The right-hand side of this equation is written in terms of the actual filter 
element values (covariance matrix elements) and the theoretical parameters. Finally, the equations 
are inverted to  produce improved estimates for the parameters. 

Using the autocovariance function to  solve for the parameters is inappropriate here, because the auto- 
covariance function is highly correlated from one lag to  the next and the efficiency of data  utilization 
is therefore small. Instead, only the autocovariance of the innovations for zero lags, i. e., the variance 
of the innovations, is used. The variance is given by 

It is assumed that  the oscillator model contains no hidden noise processes. T1-lis mcans that  each noise 
in the model is dominant over some region of Fourier frequcncy space. The principle of parsimony 
encourages this approach t o  modelling. Inspection of Eq. 36 leads to the conclusion that  each of the 
parameters dominates the variance of the innovations in a unique region of prediction tirrrc interval, 
6, making it possible to  obtain high-quality estimates for each of the parameters through a process of 
bootstrapping. 

For each parameter to  be estimated, a Kalman filter is computed using a subsct of the data chosen 
to  maximize the number of predictions in the interval for which that, parameter rnakes the dorninant 
contribution to  the innovations. The filters are designated 0 through 4, starting with 0 for thc main 
state estimation filter which runs as often as possible. Each innovation is used to cornput,t: a slngle- 
point estimate of the variance of the innovations for the corresponding 6. Substituting the estimated 
values of the remaining parameters, Eq. 36 is solved for the dominant pararrrctm-, and the estimate of 
that  parameter is updated in an exponential filter of appropriate length. If the minimum sampling 
interval is too long, it may not be possible to  estimate one or more of the parameters. However, there 
is no deleterious consequence of this situation, since a parameter that  cannot hc cstirnated 1s not 
contributing appreciably to  the prediction errors. It is not necessary to  usc separation of variances 
to  estimate individual clock parameters since the I? matrix takes into account the first order clock- 
ensemble correlations. 

The KAS-1 algorithm is adaptive in two ways. First, the clock noise parameters are updatcd aftcr each 
cycle of the recursion and used during the next cycle of the recursion. Second, the clock weights are 
updated after each cycle based on the real tirne parameter estimates or tl~t: rneasured time prediction 
errors. For minimum time prediction errors, the variances (inversc weights) needed for the calcrllation 
of the time of the reference clock with respect to the ensemble are 



Kalrnan Clock Sirnulation Algorithm 

The algorithm presented here may be used to compute the ~imulat~ccl st,ate of a precisinn clock at  any 
time in the future based on the current state of the clock and appropriat,~ noise inputs, White phase 
measurement noise, white phase additive noise, white frequency noisc, randarn walk frequency noise, 
and random walk frequency aging noise rnay all be inclutled . Although the algori thrn is quite simple, it> 
has several advantages over the ARIMA technique described by ~ a r n c s [ ~ l .  The time intcrval between 
observations is included explicitly so t ha t  a time series of observa~ions separated by varying ititervals 
may be created. In addition, the parameters are easily calculated from t h r  power spectral densities of 
the noise. These physical parameters are the same ones requircd for the Kalman analysis of the clock. 
The final advantage is that  the simulated clock noise for each state is ap l~ro~~r ia te ly  correlated with 
the noise on other states, as should be the case since the physical rrlodel fnr a clock is an integrator. 

The simulator is based on the same equation of rnotior~ for a clock, Eq. 5, ust,c1 in Kalnlan filter 
analysis. Each element of s'(t + Sit) is Normally distributed wit,h zclro nlean and is uncorrclated in 
time. The problem is to generate simulated noisc vcctors, s'(t 1 S t ) ,  t~aving the desired cnvarinncc, 
given in Eq. 19. The spectral densities which appear in the systcrr~ covariance rnatrix may t)r written 
in terms of the standard oscillator noise coclficients. The valiles ant! units are shown in 'I'ahlr. I .  

Table 1: Relationship between spectral derlsitics anti h coefIicierlts 

The goal is to  derive a solution for the noise vector, Z, in the form 

where i is a four dimensional vector o f  Normal deviates with i~ r~ i ty  viirirznce whnse clrrr~c,r~t,s are 
uncorrelated with each other and uncorrelated in time. Multiplyir~g this equatiori b y  its t,ranspose and 
taking the expectation value, one finds 

Since the clcments of the statc vector are successive jntrgrals, A 15 an upprr  right 11;ilf triangular 
matrix. Equating the corresponding clcrnrr~ts of the previniis cc l~ la i  lor], orle fir~cls 



The algorithm is easily mechanized. A random number generator function normally protluccs dcviates 
uniformly distributed over the unit interval. They may be converted to  Normally distributed dcviates 
using one of the standard procedures. Four Normal deviates arc then corrlbincd to form the noise 
vector r' and multiplied by A to  prodnce the s' vector needed to  evaluate Eq. 5 for thc  next clock 
state. The element u(t) is the desired simulated clock time state. The simulated clock measurement 
is obtained by adding white measurement noise, v(t),  t o  u ( t ) .  

.(t) = u(t) + v(t) (41) 

TEST RESULTS 

The two algorithms were run simultaneously in order to int,ercompare them. Only the 1987 version of 
the KAS-1 algorithm (i.e. without automatic parameter e~t~irnation and mixed-mode measurement 
capability) was available for testing. 

Figure 1 displays the difference between the two algorithms, in the sense AT1 - ECAS-I, for an enserr~blc 
of clevcn equally weighted clocks with no data  rejection. The two algoritlirns arc seen t,o hr: csscnt,ially 
identical in steady state on the long tcrrri. Howcvcr, as mentioned above, AT1 is not tfesigricd for the  
natural handling of transients, while KAS-1 is still optimal in such sit,ll- ~i 1 >ior~s. ' 

In Figure 2, AT1 was allowed to  exercise its 3-standard-deviation rejection criterion, wt~ilc the KAS-1 
algorithm was forced to  accept all thc data. As a result, on the short term AT1 is showr~ t,o surer 
from small discontinuities. This effect is avoided with the KAS-1 algorithrrr ( in  its lls~lal form) by its 
use of progressive deweighting of outlying data  based on Harnpcl's zC, 

Figure 3 is a plot of Allan deviation vs. sampling time r for one of the eleven clocks (no data rcjcc- 
tion), assuming it to  have the white FM and randorn-walk FM noises cllaracteristic of a conventional 
(HP5061A model) high-performance cesium. 

Figure 4 is a similar plot for the ensemble when ttic KAS-I algorithm and its rejection critcrio~i arc 
cmploycd. Each of thc clocks has equal white FM and equal ranc1orr1-walk FM noises; hence, they 
are equally weighted. There is a fi improvement in the errsernl~lr's collcct,ive stability, and the r of 
minimum Allan variance is constant. 

Figures 5 and 6 show simulated data  of contrasting clock types. Figure 5 shows the frequency stability 
of VJAG1l-type hydrogen rrlascr without a long-term frequency drift and fig. 6 is ii sirriilar plot of a 
SID or very stable (e.g. a De Marchi-tuned) cesium (no ranclorn walk of frequency). The cluck t,ypes 
represented in figs. 3, 5, and 6 are used in an enscrnble of unequal clocks similar to that  which will 
soon cornprise the USNO enscmblc (60 pcrcent cesiums, 30 percent masers, 10 pcrcctit, Sin's). This 
unequal clock set is used as the i n p u t  to two algorithms with contrasting weighting I)l~ilosophics. 

Figure 7 is the Allan deviation of an algorithm (cithcr AT1 or TCAS-1) which autorrlaticnlly determines 
the weights of individual clocks in thc cnscmhlc according to  the inverse time predictiori errors at the 
sampling time; whereas fig. 8 is the deviation of an algorithrri t,t~at, forces all clocks to be weighted 
equally. Comparing the two figures, representing eight years of data,  thc wciglitcd algorithm is signif- 
icantly better in the short-term, whereas thc equally wcightcd algorithm is better in the long-term. 
Future versions of the KAS algorithm will produce optirnurri rcsults a t  all sampling tirnes by completely 
accounting for the clock-enscrriblc correlations. 

Figures 9 and 10 are analogous to Figs. 7 and 8, respectively, bllt djsplny 25 years of data. The :same 



effects are noted, with the long-term degradation of the weighted algorithm bcing even more evident. 
Clearly, neither the AT1 nor the KAS-1 algorithm when using a weighting sclicme is optimal for sets 
of dissimilar clocks. A new algorithm, KAS-2, has been developed by Hall Aerospace that  is optirnum 
for all clock types and all sample times. It will be tested in the Algorit,lim Tcsl, Rcti irl 1990. 

CONCLUSION 

The use of simulated data  is shown to be a powerful method of co~riparirig tliff'erent clock rnndels and 
ensembling algorithms. A Kalman filter-based algorithrn, such as I l h S  1, can usc ~~r~c~clr~al ly  spaced 
data  and can handle transients well, unlike an ad hoc procedure 1 1 k v  t,hc: AT1 (1987) algorithrn. Thc 
KAS-1 algorithm is able to  handle a rriix of time and frequency mcasurerr~ents quite naturally. 

Data rejection with AT1 leads to  small discontiriuitics i n  thc tirnescale, unlike t h c  (:;is(: for KAS-I. 
While both algorithms are optimal in steady state for clocks having proportional rioistls, they are not 
optimal for sets of significantly different clocks. Thc stability of a reai clock rnsc~rible would Le further 
degraded by clock intercorrelations and systematic errors, so tha t ,  i l ~ 1 1 e  clock wpights arc bascd only 
on Allan variances, the results may not be as good as those emiployed simply iising rqiial wt,ightsilO]. 

As the project continues, more study will hc made ol sirriulated data: real clnrk clata will be arlalyzed; 
and the improvements to  the KAS-1 algorithm suggested hereix~ will t ~ c :  irr~~)l(lrrlt.nted and tested. 
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Figt .1~~ 2: Small discontinuities in A'l'l re.jection rilr:tliocl. 
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k'i'i~;~.ir(: 3: Sii~n~l;~t,cd cesium clock dat,i~. 

Fig~lrc 4: S(lii;n.c:-l~ont of N irriprovcr~lc:r~t with 11 ctlual clocks. 
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Fig~lrt: (j: Sirrlulatcd clock wit11 110 1.a1ldom walk of frec11lt~1ic.y 
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Fignlx: 7: ( _ > I I ~ , I ) I I ~ ,  of' ;~lgorithrn ~ ls ing  inverse variancc wcigl~tirlg (8 ycbiLr.s of' sir~l~llnt,c(l data). 

F ig~l re  8: Out,pi.it of' i~lgol.it,llnl rising cq1i;~I w~igl i t s  for a11 clocks (8 Y(.:iLl*.ci of silllulnt,cid d i ~ t , ; ~ ) .  
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Fig t~ re  9: Out,put of algorit,l~ir~ i l s i ~ ~ g  i11vc:rst: v;tri;~nce weight,ing (25 years of' ~ i l l ~ l l l i ~ t , ( : ( l  ( l i ~ t , ; ~ ) .  

Figtlre 10: Ou tpu t  of algorit,liln using cquxl weigl~t~s for all clocks (25 YC;-L~.S of' s i i r~i~l  il.t.~:(.I ( I i ~ t ~ i ~ ) .  




