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Abstract 

The interaction of atoms in a beam with the microwave field in a separated 
field geometry such as a Ramsey cavity i s  generally described in terms of the  
three  regions traversed successively by the  atoms, namely two interaction 
regions of length R separated by a "drift", o r  "free precession", region of 
length L. For a monokinetic beam of velocity v, the  linewidth of the  central  
fr inge in the  Ramsey resonance pattern is  usually expressed as Aw = n v/L. 

A more detailed calculation shows, however, tha t  the  linewidth is  equal t o  
IT v/L*, where the  equivalent d r i f t  L* is larger than L by an  amount of the 
order of R/L. The correction depends on the field distribution in the 
interaction regions. I t s  origin lies in the  f a c t  tha t  atomic precession is not 
limited t o  the  field-free regions but also occurs in the  interaction regions, 
where atomic coherence builds up o r  decreases continuously, 

Although the  correction t o  the  equivalent length of the d r i f t  region i s  small, 
i t  may be relevant t o  the  evaluation of the second-order Doppler effect  bias 
in primary cesium-beam standards t o  the  extent tha t  the atomic velocity is 
deduced from the  lineshape and from the geometrical parameters of the  cavity. 
I t  i s  shown tha t  in current and projected standards with atoms of average 
thermal velocity, use of corrected dimensions may lead t o  a change of the  
calculated bias of the  order of 10-14, which is  significant a t  the  levels of 
accuracy considered nowadays. 

1. INTRODUCTION 

The velocity distribution of atoms in atomic beam standards often needs t o  be 
known with considerable accuracy because of i t s  relevance t o  the  determination 
of the  second-order Doppler shi f t  6v = -(v/clZ/2. Several methods have been D 
proposed and used t o  determine the velocity distribution [l-61. Most of the  
methods actually yield a transit-time distribution, through an  analysis of the  
Ramsey pat tern  lineshape [61, the power dependence of the  transition 
probability at resonance [51, o r  through the response t o  RF pulses of varying 
periodicity 121. In order t o  deduce the average velocity and the velocity 
distribution f rom such transit-time information, one must know precisely what 
physical length has been travelled during the measured transit-time. I t  is 
often assumed tha t  the  relevant length is the separation L between the  end of 



the  f i r s t  interaction region and the  beginning of the second. The following 
calculation of the  linewidth of the central  fr inge of the  Ramsey pattern takes 
into account the  non-zero length R of the  interaction regions, which is 
usually neglected. The calculated linewidth i s  indeed affected by the  finite 
interaction length, the  amount of the correction being of order Q/L and 
depending somewhat on the  RF field profile inside the interaction regions. 

2. CALCULATION OF THE EFFECTIVE LENGTH 

The purpose of the  calculation is t o  establish a precise relationship between 
the linewidth of the resonance curve, which is  directly accessible t o  
measurement, the  length of the  Ramsey cavity, which i s  known by construction, 
and the atomic velocity which is  the  parameter t o  be determined. For the  sake 
of simplicity a monokinetic beam of velocity v will be considered; the  results  
can then be extended t o  actual velocity distributions. 

The two levels of the clock transition (F = 4; m = 0 and F = 3; m = 0 in the  
case of cesium) a r e  coupled t o  a near-resonant RF magnetic field. We wri te  the  
familiar Bloch equations f o r  the three  components of the  magnetic dipole 
(fictitious spin 1/21 associated t o  this two-level system. I t  is convenient, 
as usual, t o  wri te  these equations in a f rame rotating with the resonant pa r t  
of the  RF-field, and t o  neglect the f a s t  oscillating antiresonant part .  The 
equations of motion then read 

2 = ay ( l a )  

where x and y a r e  the transverse components of the fictitious dipole in phase 
and in quadrature with the RF-field; z i s  the  longitudinal component of the  
fictitious dipole and the population inversion of the  real  two-level system 
( z = l i f  F = 4 , m = O ; z = - l i f F = 3 , m = O ) .  

The detuning a i s  the  difference between RF frequency and atomic frequency: 
a = w - w . 5/3(t) = pB B(t) is the coupling energy between atom and RF- 

RF o' 
field (B(t) i s  the  amplitude of the RF field, directed along Ox in the 
fictitious dipole space). 

Since there  i s  no relaxation in this system, the  representative vector i s  of 
2 constant length (x2[t)  + y2(t) + z (t)  = 1 at all  times) and i t s  motion is  a 

rotation about the  instantaneous rotation vector ?! (t)  = (P( t ) ,  0, -a). 

We will consider the  two standard configurations of Ramsey cavities used in 
cesium standards, namely the  E-bend cavity where the RF field amplitude is  
constant in each interaction region, and the  H-bend cavity where the  RF field 
amplitude has a sine envelope. The corresponding time sequences f o r  B(t) a r e  
shown in Fig. 1. 



2.1 E-BEND CAVITY, EXACT SOLUTION 

Since the  amplitude of the RF field i s  constant, B is  time-incli,pendent during 
each of the  three  pa r t s  of the evolution and the  equations of motion can be 
integrated analytically in a standard manner [71. The quantity of interest  i s  
the  population inversion z a t  time T P 

+ 2TR , a s  a function of the detuning cx. 

For small detunings the exact  solution can be expanded in power series of the  
ra t io  a43 of the detuning t o  the Rabi frequency at resonance. Optimum RF 
power is assumed (PTR = n/2); f o r  detunings such t h a t  laT I 5 n/2, we have P 

The usual expression f o r  the lineshape near resonance is  the  zero order term 
of the  expansion: 

z (Tp + ZT 1 E - cos (aT 1 
R P 

The approximate linewidth Aw (FWHM) is  equal t o  n/T and the atomic velocity P 
is  related t o  the  linewidth by 

If ,  however, te rms of order 1 in a//3 a r e  kept in evaluating z,  the  main change 
is a narrowing of the fr inge spacing and width: 

4 z (Tp + 2T ) = - cos a (Tp + TR) ] R 

The linewidth is  now Aw = n/T*, where the effective transit-time T* is  equal 

The distance travelled by the atoms during the effective transit-time T* i s  
what we call the  effective length L* of the  Ramsey cavity 

t o  which the  velocity i s  now related by 

Equation (4) means t h a t  the time interval over which the phase of the  atomic 
dipole and the  phase of the RF field a r e  allowed t o  d r i f t  apa r t  between the 
two atom-field interactions extends beyond ,the field-free interval t o  include 
pa r t  of the  interaction times. The transit-time which can be inferred f rom the  
width of the  central  fr inge in the simple case of a monokinetic beam is  thus 



the time T* to travel L*, the effective length, instead of the t i m e  Tp to  

travel L in the approximate derivation. Consequently the velocity that can be 
4 R deduced from this effective time of flight is higher by a factor 1 + - - (eq. 
TC L 

(5)). I t  may be expected that a similar correction will apply in the case of a 
real beam when converting the transit-time distribution into a velocity 
distribution (see also below). 

2.2 APPROXIMATE INTEGRATION OF THE BLOCH EQUATIONS 

The origin of the additional transit time can best be seen by integrating 
directly the equations of motion of the fictitious spin 1/2. Although an exact 
integration is possible in the case of a constant field amplitude, one can 
settle for  an approximate integration where terms of order two in a / p  are  
neglected. This procedure will also allow us to  evaluate the effective 
transit-time and length of an H-bend cavity where the field amplitude is not 
constant and no analytical solution to  eqs. (1) can be found. 

We find that the FWHM linewidth, i.e. twice the detuning required for  the 
final inversion to  be equal to zero, can be expressed as  

1 

with T* = Tp + 2 J:' sin [ 1 pitp) dl'] dt 
0 

Introducing the explicit field profile 13(t) (Fig. 1) in the integral, we get 

4 
E-bend cavity: T* = T + - T P T C R  ( 9 )  

H-bend cavity: T* = T + fi J0(n/4) TR P (10) 

The E-bend result is identical to  the exact result (eq. (5)) and thus 
validates the approximate integration procedure used to  derive eq. (8). 

3. DISCUSSION 

The implication of the results above for  the second order Doppler shift bias 
depends on the average atomic velocity and the geometry of the Ramsey cavity. 

-2 
In an optically pumped standard with L = 1 m, R = 10 m, v = 300 m/s, the rms 
Doppler biases calculated with L and L* would differ by 1.3-lo-", a value 
that cannot be neglected anymore. 

The linewidth of the central fringe is of course not the only way of measuring 
transit-times. It  seems obvious, however. that the effective transit-time and 
length described here a re  the relevant parameters in relating spectral 
features of the atomic resonator t o  the atomic velocity or velocity distribu- 
tion. 



The practical case of a velocity distribution introduces a complication in 
t h a t  the  optimum power condition assumed in the monokinetic case can no longer 
be satisfied by all  atoms. This has a consequence on the  lineshape but i t  can 
be shown tha t  the effect  on the  effective t ransi t  time is  zero if the  
transit-time distribution is  symmetric. As an  illustration of th is  point we 
compare t h e  monokinetic results  (eqs. (9) and (10)) with results  191 obtained 
by computing the  linewidth of the  Ramsey pattern f o r  a real ,  asymmetric, 
velocity distribution with a width equal t o  - 10% of average velocity. In the  
H-bend case, the  equations of motion were integrated numerically: 

L* (monokinetic, eq. 9) = L + 1.27 R 
E-bend: 

L* ( v e l o c i t y  d i s t r ibu t ion)  = L + 1.28 R 

L* (monokinetic, eq. 10) = L + 1.20 R 
H-bend: 

L* ( v e l o c i t y  d i s t r i b u t i o n )  = L + 1.23 1 

Considering tha t  in the  H-bend case Q /L was .03, the  agreement i s  within the  
precision of the  monokinetic estimate where terms - ( Q/L)' have been 
neglected, 

CONCLUSION: The concept of effective transit-time and effective length of a 
Ramsey cavity has been pointed out. The use of these effective parameters in 
determining atomic velocities may lead t o  a significant improvement in the  
evaluation of the  second order Doppler bias in atomic beam primary standards. 
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F i g u r e  1 

a )  T ime-dependence  of  t h e  RF m a g n e t i c  f i e l d  B ( t )  ( i n  R a b i  
f r e q u e n c y  u n i t s ) .  S o l i d  l i n e :  E-bend c a v i t y ;  d o t t e d  l i n e :  
H-bend c a v i t y .  

b ,  c )  T ime-dependence  o f  t h e  a t o m i c  d i p o l e  y ( t )  ( b )  a n d  of  t h e  
p o p u l a t i o n  i n v e r s i o n  z ( t )  ( c )  

S o l i d  l i n e s :  - o ~ * ; !  ; d a s h e d  lines: a = 0 



1 
F i g u r e  2 :  P a t h  o f  t h e  f i c t i t i o u s  spin 7 vector on 

L 

the Bloch sphere. Solid lines: -oT* = 1 ; d a s h e d  l i n e :  2 
a = 0 .  

Figure 3: Typical Ramsey f r i n g e  p a t t e r n  and  

l i n e w i d t h .  




