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Abstract. T '  problem of light propagation is treatsd in a geocentric reference 
system with the goal of ensuring picosecond accuracy for time transfer techniques 
using e l s c t r v ~ c  signals in the vicinity of the Earth. We give an explicit 
formula for a one way time transfer, to be applied when the spatial coordinates 
of the tim tramfer stations are known in a geocenCric reference system rotating 
with ths Earth. This expression is extended, at the same accuracy kvel of one 
picosecond, to the special cases of two ,way and LASSO time transfers via 
geostationary satsllitss. 

1. Introduction 

It is well known that in relativity the notion of simultaneity is not defined a priori so that 
a conventional choice of a definition has to be made. This choice will then lead to a 
corresponding definition of clock synchronization as synchronised clocks must 
simultaneously produce the same time markers. A widely used definition is that of 
coordinate simultaneity and corresponding coordinate synchronization, as given, for 
example, by Klioner (1992): 

'Two events flxed in some reference system by the values of their coordinates (tl,xl,y~,zl) 
and (t2,x2,y,,z2) are considered to be simultaneous with respect to this reference system, if 
the values of time coordinate corresponding to them are equal: tl = tz. In the following this 
definition of simultaneity (and corresponding definition.of synchronization) we shall call 
coordinate simultaneity (and coordinate synchronization)." 



Clearly, the synchronization of two clocks by this definition is entirely dependent 
on the chosen reference system and is thus relative in nature, rather than absolute. 

In practice, coordinate synchronization between two distant clocks can be achieved 
by the exchange of an electromagnetic signal, From the knowledge of the positions of the 
clocks a t  emission and reception of the signal in the reference system of synchronization 
and the laws of light propagation in the same reference system, the coordinate time 
elapsed during transmission Tt can be calculated, 

For the construction and dissemination of international reference time scales, 
coordinate synchronization in a geocentric, non-rotating (oriented with respect to f ~ e d  
celestial objects) reference system is required. We choose the geocentric non-rotating 
reference system as defined by the resolution A4 of the IAU (1992), with asymptotically 
flat spatial coordinates, but with Terrestial Time TT being the coordinate time. TT is an 
ideal form of the International Atomic Time TAI, which is the basis of the measurement of 
time on the Earth. By its definition, TT differs from the coordinate time of the IAU by a 
constant rate. 

The clocks that are to be synchronized are usually fmed on the Earth, and have 
their spatial positions given in a rotating reference frame. Using the metric equation of the 
non-rotating system and taking into account the displacement of the clocks (in the non- 
rotating system) resulting from the relative movement of the two systems during signal 
propagation, the trangmission coordinate time Tt can be calculated. 

Recently, the precision of clock synchronization between remote clocks on the 
surface of the earth has reached the sub-nanosecond level (Hetzel & Soring 1993; Veillet et 
al. 1992; Veillet & Fridelance 1993) with further improvements expected in the near future. 
For these applications it seems sensible to develop the theory to the picosecond accuracy 
level. Recent theoretical studies in this field claim an accuracy of 0.1 nanosecond (Klioner 
1992), and in some cases (CCIR 1990, CCDS 1980) the provided formulae are expressed in 
terms of path-integrals making them more difficult to use than explicit expressions. In this 
article we provide explicit equations for synchronization in a geocentric non-rotating 
system of two clocks that have their positions given in the rotating system. All terms that 
in the vicinity of the Earth (within a geocentric sphere of 200000 km radius) are greater 
than one picosecond are included. Outside this sphere terms due to the potential of the 
Moon may amount to more than 1 ps and need to be accounted for separately. We also 
present formulae (to the same accuracy) for the special cases of two way time transfer 
(section 3) and LASSO (LAser Synchronization ,from Stationary Orbit, section 4) time 
transfers via a geostationary satellite. Here a possible small residual velocity of the 
satellite (< 1 m/s) results in further terms contributing some tens of picoseconds for two 
way- and LASSO time transfers. 



We will assume that all clocks are rate corrected for the gravitational potential a t  
their positions, and their velocities in the reference system of synchronization, and hence 
run a t  the rate of TT. 

2. Formula for a one way transfer 

We consider a rotating frame (t,Z> which rotates a t  a constant angular velocity o with 
respect to a fwed star oriented one (t,:) with two clocks a and b, a t  Era and Erl, a t  time to 
when the two frames coincide. The two clocks are to be coordinate synchronized by the 
transmission of an electromagnetic signal from a (emission at  t> to b (reception a t  tl). 

To this end the coordinate time interval T = t, - to elapsed between emission and 
reception of the signal needs to be calculated. 

The metric of a geocentric non-rotating system in the first post-Newtonian 
approximation with TT as coordinate time and asymptotically flat spatial coordinates (for 
1-00 the components of the spatial metric gU = a..) is: 

where: ds is the relativistic line element. 
t is the coordinate time TT. 
r, 0 (colatitude), 9 (longitude) are spherical coordinates in a non- 
rotating geocentric coordinate system. 
U is the gravitational potential of the Earth (positive sign). 

The scaling factor (1 + LI) results from the choice of TT as coordinate time. Lg is 
equal to U /c2, where Ug is the value of the gravitational potential on the geoid including 

B 
the centrifugal potential due to the rotation of the Earth, 

Introduction of post-post-Newtonian terms and terms due to the tidal potentials of 
the moon, sun and planets into the metric leads to a correction to the propagation time of 
a light signal in the vicinity of the Earth of less than one picosecond. Hence (1) is sufficient 
for our purposes. 

Transforming to the rotating frame by 

dg = odt + dgr 



then setting ds2 = 0 for a light signal and solving the resulting quadratic for dt  provides an 
expression for the transmission coordinate time Tt: 

Tt = {dulc - Upulc3 + wr2sin20dp lc2 
+ [l+r'sin28(d~r/du)2]w2~si;l'Bdu12c3 + 2Udulc3} + 0(c4), 

where du is the increment of coordinate length along the transmission path and the 
integral is to be taken from a to b along the transmission path in the rotating frame. 

Evaluating the above expression (for a detailed derivation see Petit & Wolf (1993)) 
gives an explicit formula for the transmission time: 

= Role - UgRoIc3 + R .i lc2 + (v: + %.% + ~o.~b)21R~)Ro12c3  
0 -b 

+ 2GME In {[x, + n.xrb]l [xra + n.Zra])lc3 

where: 
6 is the total relativistic correction. 

n-= RoIRo is the uGt vector along the transmission path 
- 
vrh is the satellite velocity in the rotating frame 
- 
a, is the satellite acceleration in the rotating frame 
and the two frames coincide at  t = to. 

The above expression provides the coordinate transmission time for a light signal 
travelling from station a to station b in the vicinity of the Earth (within a geocentric 
sphere of 200000 km radius) with the coordinates of the two stations given in an Earth 
fixed rotating frame. All terms that are greater than one picosecond are included. Note 
however, that atmospheric delays which can amount to several tens of nanoseconds are 
not considered and need to be taken into account separately. 

3. Two way time transfer 

We consider a two way time transfer between two stations c and d, fixed on the surface of 
the Earth, via a geostationary satellite s (as shown in Fig. 1). 

Two signals are transmitted in opposite directions leaving c and d a t  to and to+At 
respectively. They reach the satellite at tl  and t3, where they are immediately 



retransmitted, and arrive a t  the opposite stations a t  t2 and t,. From the clocks two 
coordinate time intervals are obtained (assuming that the clocks are rate corrected as 
mentioned in section 1): 

For synchronization the interval At is required. We shall assume that the clocks have been 
synchronized previously to within 0.1 s, a typical station to satellite transmission time 
(which can be achieved without difficulty in practice), and that the satellite has a residual 
velocity vr smaller than 1 m/s and a residual acceleration in the rotating frame of less 
than loJ m/s2. These values have been chosen as typical after consultation of the 
EUTELSAT satellite control centre. 

The defining equations for the transmission times are: 

and solving for At yields: 

The relativistic correction 6 arises from the motion of the stations and the satellite 
in the frame of synchronization and the gravitational delays for the individual 
transmissions T, to T4. 

Using equation (4) to calculate T1 to T4 and substituting the results into (7) gives an 
expression for the relativistic correction (Petit & Wolf (1993)): 

where: R, = < - Xrc R = -  - -  
ds Xni Xrd 

R = -  - -  
cd Xrd 



The first term is equivalent to 2wAJcZ with A, being the equatorial projection of 
the area of the quadrangle whose vertices are the centre of the Earth and the positions of 
the satellite and the stations in the rotating frame. 

The second term of (8) varies with vr and At, and can amount to several hundred 
picoseconds. If At - 0, it can amount to several tens of picoseconds, depending on the 
residual velocity which is in general not well known. However, one can compensate for it 
by intentionally introducing a desynchronisation in order to drive this term towards zero, 
which is the case when the two signals arrive a t  S at  about the same time (ie. tl = t3). 

In this method laser pulses emitted from the stations c and d a t  to and to+At respectively 
are reflected by the geostationary satellite and return to the stations (as shown in fig. 2). 

The satelliJe is equipped with a clock which measures the time interval between 
arrival of the signals. Hence three coordinate time intervals (after rate correction of the 
clocks) are obtained: 

For synchronization At is required. Similarly to the two way case, the defining equations 
(6) for TI to T, yield: 

Using (4) to calculate the individual transmission times T, to T4 gives for the relativistic 
correction (Petit & Wolf (1993)): 

As in (8) the first term is equivalent to 2wA,/c2. 

The second term varies with Vr and At .  This term is smaller than ps for 
- 
vr- 1 m/s and At-0.1 s, which is the case for a two way transfer and hence it does not 
appear in (8). However, for LASSO At can amount to several minutes in practice (Veillet et 



al. 1992; Veillet & Fridelance 1993) and therefore the second term in (11) can contribute up 
to 10 ps. 

Note also that while the second term of (8) can be minimised by an appropriate 
choice of At, this is not the case in (11). 

5. Constraints for practical applications 

For picosecond accuracy, the relativistic correction b contains terms in c" and in c4 
in the case of one-way time transfers (4), and terms in c - ~  only in the case of two-way (8) 
and LASSO (1 1) transfers. 

The term in c" can amount to a few hundred nanoseconds, depending on the 
relative positions of the transmission and reception points. For example, between the 
Earth and a geostationary orbit, the maximum value is about 200 ns for the one way- and 
400 ns for the two way case. In order to compute this term with picosecond accuracy, it is 
sufficient for all quantities in the term in c" to be known with a relative uncertainty of 
one or two parts in 10'. This requires coordinates known to within 6-12 m for the Earth 
stations, including uncertainties in the realization of the reference frame which are below 
- 1 m for e.g. WGSS4 and ITRF. This is generally the case for time laboratories. The 
satellite position should be known to within some tens of metres, depending on its orbit, 
and this is generally not the case a priori for a satellite without geodesic objectives. In 
addition the velocity of the satellite should be known to the same relative uncertainty of 
one or two parts in lo6, which is also not the case in general. Typically the position of a 
geostationary satellite is known to an accuracy of - 1 km which results in an error in the 
computation of the c - ~  term of - 10 ps. Similar arguments can be made to set constraints in 
the case of higher orbits or satellite to satellite time transfers. 

In the real case of a non-perfect geostationary orbit, the constraint on the 
knowledge of the velocity of the satellite is transferred to the residual velocity vr. For the 
one way and two way techniques, this constraint is about 1 cm/s for picosecond accuracy 
but in the two way technique it can be completely relaxed by an intentional 
desynchronisation of the emission of the signals at  the two stations, as mentioned in 
section 3. For LASSO, the constraint on vr is about 10 cmls if one wishes to use laser 
pulses from the two stations separated by At of several minutes. The constraint on vr can 
be relaxed by severing that on At. 

When one of the stations is on the Earth, propagation through the atmosphere is the major 
problem for one way time transfer. It leads to delays that can reach several tens of 
nanoseconds and can certainly not be calibrated to picosecond accuracy. This problem is 



not considered in this study. However the effects cancel to the picosecond level in the two 
way (provided the up and down frequencies are close enough) and LASSO techniques, 

6. Conclusion 

We have derived the relativistic correction for a one way time transfer between two 
stations that have their position given in a geocentric reference frame rotating with the 
Earth (equation (4)) including all terms in c-' and larger. For time transfer with a 
geostationary satellite the terms in cJ can amount to around 10 ps for the Sagnac 
correction and 80 ps for the gravitational delay. At present, one way time transfers are 
not accurate enough to necessitate the consideration of these terms. However, with 
accuracy expected to increase in the near future, and in view of possible satellite to 
satellite transfers (which would eliminate uncertainties due to atmospheric delays) these 
terms might well become significant. 

We also provided expressions for the relativistic corrections that need to be applied 
to two way and LASSO techniques. We have shown that the main errors in computing 
these corrections are due to the uncertainties in the position and the residual velocity of 
the satellite. The uncertainty in the position leads to an error in the computation of 
ZWA,/C~ of the order of 10 ps for both techniques. The uncertainty in the residual velocity 
affects the two techniques differently. For LASSO the second term in (11) is typically of 
the order of 10 ps, hence reducing the overall uncertainty for LASSO requires better 
knowledge of the satellite position as well as consideration of the additional term. For two 
way time transfers, on the other hand, the second term in (8) can reach 80 ps (for A t  = 0). 
Hence reducing this term by an appropriate choice of At will improve the overall accuracy 
of the two way time transfer even in the case where ir is unknown. 

In both techniques, the precision of experiments repeated over periods of several 
weeks could be affected by the variation of the residual velocity of the satellite, if the 
corresponding terms are not accounted for. 

This shows that the time community is rapidly approaching levels of precision and 
accuracy that will necessitate a more exact development of the theory. We consider the 
present paper a step in that direction. 
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Fig. 1. Two way time transfer in the non-rotating frame. Two signals are  
transmitted in opposite directions leaving c and d a t  to and $+At respectively. 
They reach the satellite a t  t, and t3, where they are immediately retransmitted, 
and arrive a t  the opposite stations a t  t2 and t4. 

Fig, 2. LASSO time transfer in the non-rotating frame. Laser pulses emitted from 
the stations c and d a t  to and to+At respectively are reflected by the 
geostationary satellite and return to the stations, A clock on board the satellite 
measures the time interval between arrival of the pulses. 



QUESTIONS AND ANSWERS 

Dieter Kirchner, TUG: One comment to the microsecond issue, from the practical point of 
view it is not easy to hold this 10 microseconds. Because a well kept geostationary satellite has 
a range rate of many tens of microseconds. So you would have to change your offset for each 
measurement. And this is not very convenient to do. 

Peter Wolf: What was that first bit? What varies several microseconds per day? 

Dieter Kirchner: The range of a geostationary satellite with respect to a station. If you 
measure the range to a geostationary satellite, this range changes. 

Peter Wolf: That is quite right. That is the problem that you don't know its position exactly 
all the time. It kind of moves, which simply changes the distance. 

Dieter Kirchner: If you measure the range to the satellite, you have a figure which changes 
and may be 100 to 150 microseconds. 

Peter Wolf: It is a trade4ff. You have to do it one way or the other if you want to be more 
precise. Either you manage to change your offset for every measurement so you can get rid of 
the additional term, or you get some knowledge on the velocity of the satellite; and then you 
can calculate the additional things, However the velocity of the satellite - as far as I know, 
what they do with geostationary satellites, they have them sort of wandering about a kind of 
observation window; as soon as it approaches the edge, they give it a boost to go back where 
it belongs. So it sort of varies quite a bit. I'm not sure. If you know the velocity, you are fine. 
If you don't, you have to get around it. 

David Allan, Allan's Time: Regarding GPS time with the laser retro-reflectors, then we can 
also calibrate that path which should help in the uncertainty, at the sub-ns level I believe. 

Peter Wolf: Of course, yes. 




