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Abstract 

Since 1988, various experiments [l, 2, 3, 41 have shown that the TV signals transmitted by 
direct TV satellites may easily be used to perform time transfers at the level of a few tens of 
nanoseconds, the main source of error being the uncertainty on the satellite position. 

We first present the two methods used in our experiment to reduce the effects of the satellite 
residual motion : the first one consists in estimating the longitude variations of the satellite 
and then using this information to improve other measurements. This allows to reduce the 
uncertainty to values between 9 and 50 nanoseconds according to the position of the 
involved stations. 

In the second method we determine the satellite position by using the data collected by three 
calibrated stations. Time transfer between each of these stations and a fourth one has been 
shown to be achievable at the precision level of ten nanoseconds. 

A new approach based on the use of a Kalman filter is proposed in order to take into 
account the dynamics of the geostationary satellite. 

The precisions on orbital elements and clock differences and rates determination given by 
the first simulated applications of the Kalman filter are presented and compared to those 
obtained by the other methods, 

INTRODUCTION 

The principle of this kind of time transfer consists in timing the arrival of a given pulse at 
two different locations and deducing the time difference of the two clocks from these data 
and from the co-ordinates of the receiving antennas and of the satellite [I]. 



But while the position of the stations are often known with a sufficient precision, it is not 
the case for the satellite position. The tolerance on the geostationary satellite longitude and 
latitude is generally + 0.1 degree. This causes significant errors on time transfer as soon as 
the stations are distant from more than a few kilometers : between Paris and Besan~on (324 
krn) the error can reach 3 microseconds. 

Until now, different methods have been used to overcome that problem. Some of them 
imply external information on the satellite position such as laser ranging [4] or more directly 
position data from the satellite control center [3]. The method we carried out to detennine 
the satellite position uses the time measurements made between three externally calibrated 
(GPS) stations to precise the satellite position and will be shortly outlined hereafter. 

A second kind of method takes into account the known geometry of the involved links [2] 
and some properties of the satellite orbits [I] to remove the effects of unknown parameters. 
The performances of this last method will also be presented. 

A third approach [3] simultaneously estimates the orbital elements of the satellite and the 
clock differences and rates from the time delays measured between three stations and from 
pseudo-ranging given by a two-way measurement performed at one of the station. 

In section 3, we propose to do the same thing by using Kalman filtering, that is known as an 
excellent way of reconstructing satellite trajectory, The final aim of this method is to reach 
the limit of accuracy (a few ns) that can be obtained from passive use (one way) of the 
signals transmitted by geostationary satellites. 

1. PREVIOUSLY USED METHODS 

The results presented in this section are based on measurements prodded by four receiving 
stations located in Besan~on (OB), Paris (OP), Toulouse (CT), and in the Observatoire de la 
C8te & A m  in Grasse referred to as OC. Those four stations track the TDF2 satellite, 
located at 18.9' W and transmitting a D2-MAC standard TV signal. The caesium clocks of 
these four stations are also linked by GPS allowing the calibration of our results. 

1.1. Time transfer using longitude calibration 

The main source of uncertainty on the time transfer is due to the residual motion of the 
satellite in its "parking box". For a given couple of stations it depends on two parameters : 
the difference between the two unit vectors station-satellite (see table 1, row 1) on the one 
hand, and the vector defined by the real position of the satellite and its mean position. 
Usually the satellite is maintained in a cell of k 0.1" (i. e. 4 73.6 km at the geostationary 
radius) in longitude and latitude, what implies variations of + 10 km in radius ; taking into 



account the longitude of the satellite (about 18.9" W for TDF1-2) , we obtain values varying 
between 2,5 and 5.5 ps for the 6 different links of our experiment. The observed variations 
are well within these theoretical limits. 

The satellite geostationary orbit is mainly composed of daily and half-daily periodic 
longitude, latitude and radius variations (due to residual eccentricity and inclination) and a 
non periodic longitudinal drift (due to irregularities of the gravitational potential). 
Consequently, it is possible to averaged out the influence of the periodic components, by 
averaging two measurement values separated by 12 hours. This reduces the errors on time 
transfer to values around 1 ps. Furthermore, if we assume that the link is calibrated by an 
external way (GPS), we can say that the observed vaxlations of the residuals are the effect of 
the satellite longitudinal drift. The importance of this effect depends on the position on each 
of the two involved stations with respect to the satellite position and can be easily calculated 
for each couple of stations. So once the longitude variations have been determined by one 
particular link (figure I), it is possible to correct the data concerning other links for the 
effects of these variations. According to the link corrected and the one used for calibration, 
the precision obtained varies from 9 ns to 50 ns in the worst case (Table 1). The Allan 
variance of the residuals for two configurations are shown on figure 2. 
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Figure 1 : Longitude variations determined by 
Table 1. Uncertainty for the corrected links (ns) OP-CT (dash line) and OP-OC @old line) 

1.2. Time transfer using explicit determination of the satellite position 

This method uses three calibrated stations (two usable links) to reduce the uncertainty on the 
satellite position. It is as precise as the above method and far less sensitive to the position of 
the station to be linked. It consists in solving the geometric problem of fmding the set of 
solutions of the system defined by the differential data obtained from the three calibrated 
stations. This gives the equation of a curve (intersection of two hyperboloi'ds) on which the 



satellite must be found. The dispersion of the residuals is ,about 15 ns for the link between 
station OC and the triangle of stations OP-CT-OB. A better spatial resolution can be 
obtained by using the triangle OP-CT-OC that is a little bit more extended to reach a 
precision of about 11 ns for the link between the stations OB and OP. 

Figure 2 (plots 2 and 3) shows that the accuracy reached by this method is of the order of a 
few 10-14 for the triangle OP-CT-OC as for OP-CT-OB. 
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Figure 2 : Log-Log plots of Allan variance versus 
averaging time 



2. ORBIT MODEL 

If we neglect at the present the different causes of perturbation of the satellite motion, this 
motion in a non-rotating geocentric reference frame is ruled by equation 1 : 

where r = y,,, and p is a function of the semi-major axis a and period T. Associated to [:I 
initial conditions (G,<) this system defines a unique trajectory. If defmed with classical 
Kepler's elements (semi-major axis a, eccentricity e, inclination i, longitude of the ascendant 
node a, argument of the perigee R, mean anomaly M), this system is equivalent to : 

In the case of geostationary orbits, since e and i are very close to zero, it is usual to use the 
following state vector : 

X = (a, ex = e.  cos(o + R), e, = e.sin ( w  + R), hx = i. cos(i2), hy = i.sin (Q), L = o + R + M)* 

We can then express 7 as a function of these elements : 

+ ex cos(2L) + ey sin ( 2L ) )  

+ ey cos(2L) + ex sin ( 2 L ) )  

a h sin L - h, cos(l)] 1 ' .  0 
The time measurements p, made between two stations Si (c) and S, (5)  at the instant t are 
a function of X and t that can be written as : 



where c is the speed of light. 6 and 5 are a function of the sidereal time (they would be 
constant in a rotating reference frame). 

3. KALMAN FILTER SETUP 

To apply the Kalman filter to a given system, we must be able to : 

1. elaborate an evolution model of the system, i. e. estimate from a value at an instant k of a 
quantity X called state vector the value of X at the instant k+l.  This simply reflects the 
dynamics of the system. 

2. correct the preceding estimation with the help of measurements concerning a function of 
one or more of the components of X and of the prediction of what these measurements 
should be when taking into account the current state. 

In our case, the system dynamics is simple in first approximation. We have : 

Also, there is no problem to include in state vector X the clock difference and rate of two 
given stations. Then, if x, stands for the estimated state vector at instant k, we can easily 
define the matrix p,*,+, so that we have : 

d~i, The obselvation equation however is not so simple since - (X , t )  is not a linear function 
dt 

of the orbital elements. So the computation of the correction to the predicted measurement 
requires a linearisation around the current estimation xk of these elements. This leads to the 
extend Kalman filter formulation [ 5 ]  in which we have to determine the matrix : 



Table 2. Influence of the different orbital elements 
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Figure 4 : Location of the stations 

The influence of the variations of the different orbital elements on the measurements varies 
according to the relative geometry of the stations involved in the measurements. Table 2 
shows the maximum error generated by the maximum authorised variations (in the sense of 
station keeping) of each orbital element for each of the 6 links of our experiment. The 
values obtained for ex (resp. h,) are of course the same for e, (resp. h,). We see that the 
main source of error are the mean longitude and the inclination vector. These values of 

Bh5 confim the ones obtained in a different way [I]. Table 2 also confirms the influence a 
of the geometry of a given link on the partial derivatives (figure 4). 

Because of a mistake on error estimation, the first simulation results are irrelevant and have 
to be recomputed. 

Nevertheless, a separate study lead by the CNES demonstrates that when using the data 
from 4 calibrated stations, these elements can be determined with the imprecision given in 
table 3 [6] ,  assuming an uncertainty on the measurements of a given link of 100 ns. In the 
near future, we expect to lessen this value to about 10 ns by perf'orming a calibration of the 
4 receiving sets. 



Table 3 : Theoretic imprecision on the orbital elements. 

CONCLUSION 

We have presented the different methods we used to reduce the influence of the satellite 
motion on time delay determination. A data processing algorithm based on the application of 
an extended Kalman filter has been proposed and is currently being tested. 
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It could appear to be necessary to include in the model some known orbital perturbations, 
particularly those concerning the mean longitude L and to perform better calibration of the 
receiving sets [I], as this appears in [6] to be the most important source of uncertainty on 
the measurements, and then, in the determination of the satellite orbit. 

L deg) 

2,5 

e, (lod) 

8.0 

A large amount of results have been obtained very recently by the CNES [6] and will be of 
great help in the continuation of the experiment. 
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