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Abstract

A wavelet is a relatively new mathematical tool that can be used to analyze data arising in PTTI
applications. This paper presents a basic introduction to wavelets and wavelet analysis. We also look
briefly at some specific uses for wavelets with PTTI data, including (1) tracking data whose statistical
properties are evolving over time, (2) decomposing the sample variance for a set of data into components
that are attributable to variations over different scales, and (3) decorrelating highly correlated data.

What is a Wavelet?

e sines & cosines are ‘big waves’

e wavelets are ‘small waves’ (left-hand is Haar wavelet ¥™(u))
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What is Wavelet Analysis?: I

e multiply wavelet & time series sc(u) together & integrate:

e/ BGDO Y (u)x(u) du = W(1,0) is proportional to difference
between averages of x(u) over intervals [—1, 0] and [0, 1]

e defines wavelet coefficient W (1,0) for
— scale 1 (width of each interval)
— time 0 (center of combined intervals)

What is Wavelet Analysis?: 11

e stretch or shrink wavelet to define W (7, 0) for other scales 7:

0 _JL WW' _.W yields W (2,0)
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e relocate to define W(r, t) for other times ¢:

_m it WV\ W yields WL 1)

PRI YRR | PO CRNNPUN | MUY NPR
3 ] 3-3 0 3-3 0 3

H t u
4

212



35" Annual Precise Time and Time Interval (PTTI) Meeting

What is Wavelet Analysis?: II1

e W(r,t) over all scales 7 > 0 and all times ¢ called
continuous wavelet transform (CWT) for z(u)

e CWT analyzes z(u) into components that are
— associated with a scale and a time
— physically related to a difference of averages
e similar interpretation for other wavelets 1(u)

e W (T, t) equivalent to x(u) since, given CWT, can recover x(u):

m(u)zciw][;océ M::W(T,t)% ' (“‘;t) dt] dr,

where C, is a constant depending on specific wavelet 1(u)

Maximal Overlap Discrete Wavelet Transform

elet X = [Xp, Xq,...,X N_,]T be observed time series

e can formulate MODWT of X as vectors W A W Jo & \ Tor
each of dimension N (number of levels Jiy chosen by user)
® Wj contains wavelet coefficients, 7 =1,... ,Jy
— associated with differences in averages over scale 7; = o1
— closely related to W (7;,t) over restricted set of times
® \7 J, contains scaling coefficients
— associated with averages over scale 27 = 20
—summarizes W (7, t) over scales 7 > 7 T

e X & MODWT equivalent: given MODWT, can recover X
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Example: MODWT Coefficients for Clock 55
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can use to track variations across time at a given scale

Wavelet-Based Analysis of Variance: 1

2 ¢ 5 . . 5 9 Ji— 9
consider ‘energy’ in time series: ||X|? = XTX = s Xi

=0
energy preserved in MODWT coefficients:
,}”
2 W2 1 (1T 112
IXIP =D IWSI17 + [V g
J=1

leads to analysis of sample variance:
1 N—1 | Jy
< A S i = 2 5
= = Y K= ix? = (D IWIP + 1V 412) — i
=0 j=1

where f1y = ?lv Zj\i{_}l X is sample mean
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Wavelet-Based Analysis of Variance: 11

e if X realization of process with stationary increments,
N. 2 1@ pati fa 1 f T role o Ty 2 .
[W||“/N is estimator of wavelet variance v3 (7;)

2 \ 9
e wavelet variance analyzes process variance o3 across scales 7;:
oo
2 s XY = 2 f
oy =var{X;} = E vx(75)
j=1

(note: 0% can be infinite for certain processes)

e special case: Haar wavelet variance with fractional frequency
. = . . 9 .
deviates Y; essentially same as Allan variance 0'—?(2_. 7;) since
2. n_ 1 2 ;
1’?(7';}) = 50'?(2, Tj)

e (): ‘old wine in a new bottle,” or something new?

What Wavelets Bring to the Table

= 9 . . . : 9
® 2||W,||“/N gives a previously unknown estimator for 032, 75)
e with addition of ‘reflection’ boundary conditions, estimator is
an improvement over existing estimators (smaller mean square
error; Greenhall, Howe & Percival, 1999)
e non-Haar wavelets provide interesting generalizations
— still provide exact decompositions of sample variance
— can handle wider range of power laws
— can handle polynomial trends of certain orders
— competitive with modified Allan variance
e unified theory provides methods for getting confidence intervals
that do not require a prior assumption of noise type
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Discrete Wavelet Transform (DWT)

e obtain by subsampling and rescaling MODWT
e yields vectors Wy, ..., W &V
— W, has N/ 27 wavelet coefficients
-V, has N/ 270 scaling coefficients
e total # of DWT coefficients is IV, i.e., dimension of X
e X & DWT equivalent: given DWT, can recover X

e DWT acts as a decorrelating transform

Example: DWT Coefficients for Clock 55 X;
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e have approximate within-scale & between-scale decorrelation
(non-Haar wavelets offer better between-scale approximation)
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Uses for DWT Decorrelating Property

e cstimation of parameters for statistical models
— consider modeling X as process with spectrum
Sx(f)=C|fI*
— power-law model depends on parameters C' and «
— consider estimating C' and « via maximum likelihood (ML)
— exact ML estimators difficult to obtain
— DWT yields simple, but effective. approximate ML estimator
e testing for homogeneity of X at scale 7; across time
e assessing variability in certain statistics via bootstrapping

e fast simulation of time series

Other Potential Uses for Wavelets in PTTI

e multiresolution analysis (based on wavelet synthesis of X)
e detection of singularities (maximum modulus of CWT)
e data compression

e signal extraction (wavelet shrinkage)
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Summary

e wavelets give insight into frequency instability characterization
— emphasize role of exact analysis of process/sample variance
— provide estimators with reduced mean square error

e wavelets lead to easily computed approximate maximum likeli-
hood estimators for parameters of power-law processes

e many other potential uses
— article #20,654 is waiting to be written!

e thanks to conference organizers for invitation to speak!
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QUESTIONS AND ANSWERS

MARC WEISS (National Institute of Standards and Technology): How does the wavelet
analysis compare in terms of the long term? There is a problem with getting a long-term Allan
variance in terms of confidence and bias. Does the wavelet variance, if you have a variance via
wavelet analysis, improve the problem?

DON PERCIVAL: Yes, it does. In the work | did with Dave Howe and Chuck Greenhall on
TOTVAR, what you are doing is getting a bias estimate of the wavelet of the Allan variance using
this scheme right here. But it has associated with it a smaller variance. In other words, the tota
mean sguared area can show that it decreased. So it gives the superior estimate out the very, very
longest time scales. That is probably the big advantage.

WEISS: Soitisessentially TOTVAR

PERCIVAL: Yes, with a Haar thing, it ends being TOTVAR. So you can regard TOTVAR as a
wavelet-based estimator of the Allan variance. Soitisjust anew estimator of the Allan variance.

FRANCOISVERNOTTE (Observatoire de Besancon): In the literature, there are many different
wavelet chips. How isit possible to choose the right one for a given problem?

PERCIVAL: Itisnot that difficult. The Daubechie family of wavelets is a series of filters of
different lengths. So the Haar is length two. There is a length four, length six, and length eight.
What | found to be a very effective thing is just to do an analysis in which you look at what you get
for the different wavelet lengths. What you will often find is that sometimes the Haar is not
adequate, because it has certain leakage properties. That is why the Allan variance has problems at
times. When you go to these higher order things, things will stabilize and you will find that using the
length four wavelet and the length six wavelet gives you about the same thing. So that means you
can back off and just use the length four one. So there are some very simple little techniques you can
use in order to pick an appropriate wavelet from amongst the Daubechie family of wavelets.

DENNISMcCARTHY (U.S. Naval Observatory): Just aquick question. One of the concerns for
people in this community is you have fixed finite-length data, and you would like to determine what
is the stochadtic data and what is sort of the underlying trend. Have you thought about a way the
wavel ets might be used to separate the determinigtic part from the noise part?

PERCIVAL: Yes. If thetrend can be modeled as a low-order polynomial, what happens is that
polynomial will not show up at al in the wavelet coefficients. You can in a certain sense handle
polynomia trends very easily. The Haar wavelet has afirst differencein it. The next wavelet up has
a second difference and the next wavelet up has a third difference. So athird difference would Kill
off a quadratic term, which would get rid of them totally. By going to the higher-order wavelet, you
can actually automatically handle at least polynomia trends and get out coefficients which are
impervious to that trend background.

McCARTHY: A quick comment. The wavelet business here has been why it has received
widespread use in the geodetic and geophysical community. Something you did not mention was
looking at the spectral content of time series as a function of time. That has proved to be extremely
useful to establish the spectra of various physical processes as a function of time, which can be done
with this.
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PERCIVAL: Right, exactly. So that little example | gave where the clock seemed to be increasing
in variability toward the end is exactly what you are talking about. Because the scale eight things
would relate to a certain band of frequencies; you can use that to track the frequency variations
acrosstime. So, yes, that isavery good point.
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