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Abstract— We refine the evaluation of the uncertainty on 
[UTC – UTC (k)], by taking into account in particular the 
contribution of the correlations. To easily handle the different 
computational requirements we use a matrix formulation. 
Using this matrix formalism we re-analyze the link-based 
uncertainties and we obtain the same solution as given in [1]. 
Next we evaluate the site–based uncertainties and compare the 
results with the link-based uncertainties. 

I. INTRODUCTION  
In this paper we refine the evaluation of the uncertainty 

in [UTC – UTC(k)]. In particular we evaluate the 
contribution of the correlations in a matrix formalism and 
consider the effects of two different types of uncertainties:  

1. Link-based uncertainties, the same as presented in 
previous paper [1] where we considered the links 
measuring [UTC(i) – UTC(j)] as the main source of 
uncertainty and we introduced the link uncertainty 
values as published in BIPM Circular T (Section 6), 
considering those value as “global link” uncertainty and 
not ascribing the uncertainty to the different 
laboratories. The different links are assumed as 
uncorrelated and the only correlations are due to 
partially overlapping links. 

2. Site-based uncertainties wherein the uncertainty of the 
links is considered as due to different contributions, 
mainly the time transfer equipment of the laboratories 
that are being used for different links may correlate the 
results. 

To easily handle the different computational 
requirements we use a matrix formulation presented in the 
first part. In the second part we re-analyze the link-based 
uncertainties using this matrix formulation and we obtain the 
same solution given in [1]. After that, we evaluate the site–

based uncertainties and compare the results with the link-
based approach to finally estimate the uncertainty of [UTC – 
UTC(k)].  

II. INTRODUCTION TO MATRIX FORMULATION 
We introduce a matrix formulation for dealing with the 
uncertainties [UTC – UTC (k)]. This is based on the general 
optimal estimation theory and it is possible to find the 
complete description of these concepts in [2,3]. 

We start defining the covariance of two random 
variables  X and Y as: 

)))())((((),( YEYXEXEYXCov −−=            (1) 

and, in particular, Cov(X,Y)=E(XY) if the variables X and Y 
have zero mean. It appears that Cov(X,X)=Var(X). We can 
have a different situation considering n random variables 

nXXX ,...,, 21 . In this case we define the column vector X 
as X = ( )TnXXX ,...,, 21 , where superscriptT denotes 
transposition. In general the components of X may be 
correlated and have non zero means values. We denote the 
respective means as E(X1), E(X2),…., E(Xn) and arrange them 
in the vector E(X).  

We can define a matrix that describes the variances and 
covariances of the n variables, this is the covariance matrix 
defined as: 

    [ ]( ) [ ]( )( )T
X XEXXEXEΣ −−= .      (2)      

We recognize the variance of the variable Xi in the (i,i) 
diagonal element while the off diagonal terms (i,j) contains 
the covariance between Xi and Xj as defined in (1). We now 
define a new set of random variables nYYY ,....,, 21   

that are linearly related to nXXX ,...,, 21 via the equation  
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BAXY +=                   (3) 

where Y is the column vector ( )TnYYY ,....,, 21 , B is a 
constant vector and A is called design matrix. 

We find the mean of the Y by evaluating the expectation 
values at both sides of the linear transformation 

BAXY +=  and we obtain ( ) ( ) BXAEYE += . The 
covariance matrix of Y can be obtained using the definition 
analogous to (2) and: 

( )( ) ( )( )( )
( )( ) ( )( )( ) T

X
TT

T
Y

AAΣAXE-XXE-XAE

YEYYEYEΣ

==

=−−=
           (4) 

This transformation of covariance matrices is the base of 
the theory of optimal estimation [2]. More information about 
its application in statistical and probability problems may be 
found in [3]. On the application of optimal estimation theory 
in metrology and time related problems and in the definition 
of ensemble time scale the reader is referred to [4, 5, 6] and 
the references quoted there. We are going to use these 
relations many times in this work. 

III. LINK-BASED UNCERTAINTY  
We start again from the approach presented in [1] to 

evaluate the uncertainty on UTC-UTC(j) and we translate it 
in the matrix formulation. We considered the definition of 
the ensemble time EAL as:  

( ) ( )

( ) ( ) ( )







=−

′=∑∑
==

txtxtx

thwtxw

jiji

N

i
iii

N

i
i

,

11  

where N is the number of the atomic clocks, wi the weight of 
the clocks, hi(t) is the reading of clock Hi at time t, and hi' (t) 
is the prediction of the reading of clock Hi to guarantee the 
continuity of the time scale and ( ) ( ) ( )thtEALtx ii −= . The 
solution is: 

( ) ( ) ( ) ( )[ ] ( )thththwthtEALx j

N

i
iiijj −′+=−= ∑

=1
  

where the variables are the weights, the 

measures ( ) ( ) ( )txtxtx ijji −=,  and the predictions ( )thi
′ . 

The predictions and the weights are fixed by appropriate 
algorithms based on the past clock behaviour, therefore we 
consider the measures xi,j  are the only contributors to the 
uncertainties in the knowledge of xj.  Moreover, [UTC – 
EAL] depends only on pre-determined leap seconds and 
frequency steers that do not add uncertainty.  The 
uncertainties of [UTC – UTC (k)] are therefore close to the 
uncertainties of  [TAI – UTC (k)] and [EAL – UTC (k)]. 
 

The equation above is valid for any clock contributing to 
UTC, without loosing generality we consider hj=UTC(PTB) 
to have an explicit  example for the following evaluations but 
the relationship may be applied to any other clock or UTC(k) 
time scale. Therefore this relation becomes: 

( )

( ) ( )[ ] )(

)(

1

)(

PTBUTCththw

PTBUTCtEALx
N

i
iii

PTBUTC

−′+

=−=

∑
=

              (4.1) 

where the xi,j becomes xi,UTC(PTB) and every measures are 
reported to PTB. All the other clocks can be referred to EAL 
by using the relationship: 

          ( ) ( ) ( )txtxtx jiji ,+=         (4.2) 

where xi is the difference between the clock i or UTC(i) 
and EAL. In [1] we have obtained the uncertainty of UTC-
UTC (j) using the law of propagation of uncertainty [7] and 
we obtained: 
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In this paper we obtain and compare the equations that 
leads to the different estimates of the uncertainty of UTC-
UTC(PTB) by using different approaches. We can generalize 
the equations referring to any laboratory but for simplicity 
we have concentrate on the case of UTC-UTC(PTB). The 
numerical impacts will nevertheless evaluated on all the 
laboratories in Sec V. 

To show the matrix formulation of linked-based 
uncertainty we consider the real situation of the current 
international link network reported by Circular T 207 (March 
2005). We have 56 laboratories and 55 links. The pivot 
laboratories are NIST, USNO, NICT, NTSC and PTB. 

In order to introduce the matrix expression analogous to 
(4.1) and (5), having 56 laboratories and 55 links referring 

each laboratories to PTB, we set ( )VSLAPLAOS WWW ...=TW  
the row vector (1x55) of the weights of each laboratory apart 
from the PTB laboratory and LinkPTB (55x1) the column 
vector of the links refereed to PTB as: 



















=

−PTBVSL

PTBAPL

PTBAOS

x

x
x

L
,

,

PTBLink

. 

Since the prediction in (4.1) doesn’t carry uncertainty, we 
neglect the prediction terms at the moment and continue the 
evaluation by considering only the link measurement. We 
can thus write (4.1) as: 
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PTB
T LinkW ⋅=− )(PTBUTCEAL .                (6) 

In the Circular T we have the links xi,j, not directly 
referred to PTB, we call Link this vector which appears as: 



















=

−PTBVSL

USNOAPL

PTBAOS

x

x
x

L
,

,

Link

 
The covariance matrix of the links may be written using 

the relation (2). In [1] we considered negligible the 
correlations between different links, therefore we used a 
covariance matrix of the links as a diagonal matrix (55x55) 
where the diagonal terms are simply the squared 
uncertainties (variances) of each link measurement as 
published in Circular T. 










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





=

−

−

−

2

2

2

000
000
000
000

PTBVSL

USNOAPL

PTBAOS

u

u
u

L
LinkΣ

. 

To estimate the uncertainty of UTC-UTC (PTB) from (6), 
we need the covariance matrix of the links referred to PTB. 
We need the design matrix A (55x55) such 
that: LinkALink PTB ⋅= . To obtain the matrix covariance of 
LinkPTB we can use the fundamental relationship (4):  

T
LinkPTBLink, AAΣΣ =    (7) 

The design matrix A is an appropriate ensemble of +1 
terms which combine the link measures and refer any lab to 
PTB, the structure of A will be illustrated in the example of 
next section. 

In case of link-based uncertainty [1], we observed 
correlation in the link measures only when a common path 
was partially used in two multiple links. Here we re-obtain 
the same result. We obtain a (55x55) covariance matrix 

PTBLink,Σ  with the variance terms in the principal diagonal 
and the off-diagonal covariance terms only when partially 
overlapping links exist. To evaluate the covariance terms we 
calculate for example the covariance between the links 
(i,PTB) e (j,PTB) assuming  (j,PTB)=(j,i)+(i,PTB): 

( ) ( )( )
( )( )( ) ( )( ) ( )( ) ( )PTBiVarPTBjEPTBiEPTBjPTBiE

PTBjPTBiCov
,,,,,

,,,
=−=

=

having used an expression for the covariance analogous to 
(1) and remembering that the link noise are considered as 
independent. The covariance term contains only the 
uncertainty of the common link (i,PTB). 

Now we have the covariance matrix of the links reported 
to PTB and we can obtain the uncertainty of UTC-UTC(PTB) 
applying (4) to the definition (6) as : 

WΣW PTBLink,
T=−

2
)(PTBUTCUTCu

  (8) 

Before discussing the impact on 
2

)(PTBUTCUTCu − ,  we 
want to study and understand the covariance matrix of the 

links called PTBLink,Σ
to check which is the meaning of each 

term. In the following section we show simple examples.  

A. Example 1 
We consider a simple case with four clocks, four labs, 

with two pivot laboratories (USNO and PTB), we assume the 
links as uncorrelated and the uncertainty are not ascribed to 
the laboratory equipments but to the links (the same work 
hypothesis of [1]).  

 

Using the scalar expression (5) we had obtained the 
uncertainty of UTC-UTC(PTB) as: 

 
( ) 22

22222
)(

PTBUSNOUSNOAPL

USNOAPLAPLPTBBEVBEVPTBUTCUTC

uWW

uWuWu

−

−−−

++

++=
  (9) 

To use a matrix formulation we consider the information 
obtained by Circular T. We have a diagonal covariance 
matrix of the links  


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
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−
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and we can obtain the covariance matrix of the links 

referred to PTB. In this case we would have  
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Using the relation 
T

LinkPTBLink, AAΣΣ =
 we obtain the 

covariance matrix of the links reported to PTB: 















 +
=

−−

−

−−−

22

2

222

0
00

0

PTBUSNOPTBUSNO

PTBBEV

PTBUSNOPTBUSNOUSNOAPL

uu
u

uuu

PTBLink,Σ

 

The uncertainty of UTC-UTC(PTB) can be obtained with (8): 
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which leads to the same result of  (9). 

This equivalence of the formulations can be 
demonstrated for each laboratory. Using the complete 
(55x55) design matrix A corresponding to the current 
international link network, we obtain the same value for the 
uncertainty of UTC-UTC(PTB) that we obtained using (5). 

IV. SITE-BASED UNCERTAINTY  
In this case, we assume the uncertainty is no longer due 

to unknowns in the “global links” as a whole.  Instead it is 
attributed to the different laboratories assuming that the 
uncertainty of the link (i,j) is mostly given by the uncertainty 
added by the measuring equipment in lab i and by the 
uncertainty added by the measuring equipment in lab j. The 
assumption in this case is that the uncertainty of the link (i,j) 
may be decomposed as  222

, jix uuu
ji

+= . 

To evaluate the impact of this different point of view, we 
need  to estimate the covariance matrices as in the previous 
part. The difference is in the construction of these matrices. 
In this case we have a vector Lab containing the contribution 
of each single lab to the measurement and to the uncertainty 
and using a design matrix B we want to obtain the matrix of 
original links in the Circular T. Then the covariance matrix 
of the links is used as in the previous case. The difference is 
that we want here to build the covariance matrix of the links 
as obtained by the summation of laboratory contributions. 
Clearly the contribution of each single lab is not trivial to be 
estimated, but at the moment we concentrate on evaluating 
how contributions are mixed up to obtain the final 
uncertainty. Later we will deal with the estimation of single 
lab contribution. We define a column vector called Lab 
which in the current TAI configuration is given by 56 
laboratories therefore the vector has  dimensions (56x1): 























=

VSL

AUS
APL
AOS

L

Lab  

using a design matrix B (55x56) we obtain the column 
vector of the original links Link (55x1) as reported in the 
Circular T by 

LabBLink ⋅= . 

The design matrix B is a matrix with 1 and –1 in the 
columns of the laboratory i and j respectively if the link is 
xi,j. The row is the position of the link xi,j. In our case we 
have considered them in alphabetical order as the Circular T. 
The relationship of the respective covariance matrices would 
be, using (4): 

T
LabLink BBΣΣ =  

In this case,  LinkΣ would not be a diagonal matrix 
because the uncertainty contribution due to the equipment in 
the common lab is a common correlation factor. Having 
evaluated LinkΣ , we can use the formulae (7) and (8) as the 
previous paragraph to calculate the uncertainty of UTC-UTC 
(PTB).   

we now illustrate some simple examples to understand 
the correlations and the matrix composition. 

The dimension of the Lab vector can be different if we 
consider different equipments for the links in the pivot 
laboratories. For example the PTB laboratory uses the 
TWSTFT equipment for the link with IEN, OP, USNO etc. 
but it also uses the GPS P3 equipment for the link with 
NICT. In this case the vector Lab would have two type of 
equipment for the PTB lab so it would have dimension 
(57x1). This consideration can be generalized. 

A.  Example 2 
The first example is the case of the laboratory PTB 

linked to 3 laboratories with the same equipment (only one 
pivot,  PTB, using only one piece of equipment): 

The vector of the laboratories is: 

( )TPTBCAOBEVAOS ,,,=Lab  

PTB

BEV
CAO 

AOS
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the column vector Link in the Circular T can be obtained 
using the design matrix B by: 


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Considering the covariance matrix of Lab (the different 
equipment either in the same or different labs are assumed 
uncorrelated) 
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we obtain the covariance matrix of Link using the relation 
T

LabLink BBΣΣ = and, in this particular case  we have 

LinkPTBLink, ΣΣ = , therefore: 
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LinkPTBLink, ΣΣ . 

 

Remark: We can observe the difference between the 
covariance matrix associated with link-based  and site-based 
uncertainties. Both the matrixes have the same values on the 
main diagonal but with the off-diagonal terms are zero for 
the link-based uncertainties. Indeed for the site-based 
uncertainty the off-diagonal terms represent the correlations 
due to  the  PTB equipment that is common in all the links.  

Finally we calculate the uncertainty of UTC-UTC (PTB) 
using (8) with the new covariance matrix PTBLink,Σ : 
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where we have used the relationship  
1=+++ PTBCAOBEVAOS WWWW  in the last passage. 

B. Example 3 
To investigate more deeply the effect of correlations we 

need to consider a more complex system. Therefore we 
consider the case with 2 pivots (PTB and USNO), as 
illustrated below (some case as in Example 1) 

 

 

In this case the column vector Lab is the following. In any 
lab only one piece of equipment is used for the links: 
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the column vector Link in the Circular T can be obtained 
using the design matrix B as: 
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Considering the covariance matrix of Lab (again only 
one piece of equipment in each lab, all uncorrelated) 
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we obtain the covariance matrix of the Link using the 
relation T

LabLink BBΣΣ = : 


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In this matrix we have different terms off-diagonal.  

Remark: In this case we can see two different terms of 
correlation. The uncertainty of PTB equipment denoted by 

2
PTBu  is involved in the covariance of the links USNO-PTB 

and BEV-PTB because both links are based on the same 
PTB equipment. A negative covariance given by the 

APL

USNO

PTB BEV
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uncertainty of USNO equipment denoted by 2
USNOu−  is due 

to use the same USNO equipment for USNO-PTB and APL-
USNO links but it appears with the negative sign due to the 
different position of USNO in the two links. If we consider 
these relations: 





=−−
−=−−

)(),(
)(),(

PTBVarPTBBEVPTBUSNOCov
USNOVarPTBUSNOUSNOAPLCov  

we can understand the sign for uncertainty of USNO in the 
covariance matrix.   

To obtain the uncertainty of UTC-UTC (PTB) we need 
the covariance matrix of the links referred to PTB. We can 
obtain it using again the relation 

T
LinkPTBLink, AAΣΣ = with the appropriate matrix A 

yielding to: 
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Remark: Off- diagonal we always have the covariance 
due to the uncertainty of PTB equipment and we don’t have 
anymore the covariance due to USNO. In order to 
understand that we consider that, using the same USNO 
equipment we can write: 

(UTC(APL)-UTC(USNO))+(UTC(USNO)- 
UTC(PTB))=UTC(APL)-UTC(PTB). 

If the measurements are simultaneous, performed with 
the same USNO equipment, we may assume that the noise 
added by the common USNO equipment is cancelled in the 
link composition, so we don’t have anymore the contribution 
of the USNO equipment. We see that the uncertainty of the 
USNO equip disappears and in this case it would not 
contribute to uncertainty of UTC-UTC(PTB).  We call this 
topological case as the “sandwich case” in which the 
uncertainty due to the central lab equipment is cancelled. 

The uncertainty of UTC-UTC(PTB) can be estimated 
using (8): 
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where we have used   1=+++ PTBCAOBEVAOS WWWW . 

C. Example 4 
To evaluate the real case of the correlations among the 

laboratories we have to consider the different lab equipments 

used in the different link. The situation is the same of the 
Example 1 and 3 with USNO e PTB pivot laboratories. 

We can consider for example the link APL-USNO with 
USNO GPS receiver, USNO-PTB with TWSTFT receivers, 
and PTB-BEV with PTB GPS receiver. The column vector 
of the lab equipment in this case is: 

( )T
GPSTWTWGPS PTBPTBUSNOUSNOBEVAPL ,,,,,=Lab

in this case the column vector Link reported in the Circular T 
can be written as: 
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using the design matrix B. 

Considering the covariance matrix of the Lab, where any 
piece of equipment is considered, at the moment, 
independent from any other in the same or different lab: 
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we obtain the covariance matrix of the Link using the 
relation T

LabLink BBΣΣ = : 
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In order to obtain the uncertainty of UTC-UTC (PTB) we 
need to obtain the covariance matrix of the links referred to 
PTB with this relation T

LinkPTBLink, AAΣΣ =  
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The uncertainty of UTC-UTC (PTB) can be obtained as: 
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In this case we obtain the same solution (9) presented in 
the Example 1 considering the assumption 222

, jix uuu
ji

+= . 
In fact the pivot labs have different equipment dedicated to 
the different links and no correlation due to common 
equipment is present. Conversely, the result is different to 
the result of Example 3. In Example 3 USNO used the same 
equipment for the two links so the contribution of the USNO 
common equipment was cancelled, here the two USNO 
equipment are different and independent and they play 
independent role. 

V. EXTENDING THE EVALUATION TO ANY LAB 
In the previous parts we have considered only the 

uncertainty of UTC-UTC(PTB) in order to show the 
differences between the side-based  the link-based 
uncertainties.  Now we want to determine the uncertainty of 
UTC-UTC(k) for every k laboratory. This can be done using 
the relationship (4.2) and the corresponding uncertainty 
expression as reported in [1] paying attention to the role 
played by covariance. This is done in the section V.B. 
Alternatively, we can extend the matrix approach and 
evaluate the transformation of the covariance matrices by 
(4). This is illustrated in sec V.A. 

A.  Using a matrix formulation 
We consider the (N x N) system solved by ALGOS in 

order to determine the difference between EAL and UTC(k):  
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Let’s suppose that all the measures are referred to the 
PTB lab. We can write this system in the matrix formulation: 
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   (10bis). 

where we have introduced for simplicity a single 
contribution from any lab, independently of the actual 
number of clocks in the lab, basing on the fact that [1] the 
ALGOS algorithm would generate the same results if each 
laboratory’s clocks were replaced by a single “equivalent” 
clock whose reading was the weighted average of the 
individual clocks and whose weight Wi in EAL was the sum 
of the individual clock weights.   

The column vector of the links referred to PTB in the 
l.h.s. can be written as a block matrix, where the summation 
of the predictions is also imbedded: 
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where LinkPTB is the usual vector of the links referred to 
PTB. Since we consider that the contribution of prediction 

'
ih  is negligible when evaluating uncertainties, the first term 

in the block matrix can be set to zero, without loosing 

generality, therefore  
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We may interpret (10bis) as a linear transformation 
ZCLink'

PTB = where the vector Z is 
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and C is the design matrix appearing in (10bis). Actually the 
vector Z contains the difference between EAL and the 
appropriate laboratory average clock that maybe directly 
UTC(k) or, in any case, may be related to UTC(k) with a 
negligible uncertainty by means of a measurement internal to 
the k lab. Therefore here we consider directly UTC(k) in the 
Z vector when the aim is evaluating uncertainties. 

The quantities in the vector Z are the unknowns and since 
C is invertible, the ALGOS system is solved 
as '

PTB
1 LinkCZ −=  so, using again  (4), we obtain: : 

( ) ( )T1
Link

1
Z CΣCΣ

PTB

−−= ' . 

In the principal diagonal of ZΣ  we have the squared 
uncertainty of UTC-UTC(k) for any lab k,  in the last 
diagonal element we have  the squared uncertainty of UTC-
UTC(PTB), the same that we found before by means of (8) 
Since predictions are not considered when evaluating 
uncertainties, the covariance matrix '

PTBLinkΣ  can be written 
as a block matrix: 
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where the only non zero term is the covariance matrix of 
the link reported to PTB. 

B. Using a scalar expression of the uncertainty for site –
based uncertainty 

 
In [1] we presented the study of the uncertainty of UTC-

UTC(k) using a scalar expression. Here we want to describe 
the scalar expression for the site-based uncertainty to check 
it results in agreement with the matrix approach presented in 
the previous section. In particular in [1] we have used the 
following relationship: 

ijijiji eqxxxx Wuuuu 2222
,,

2−+=  

to calculate the uncertainty of each clock Hi, given the 
uncertainty of any clock Hj and the uncertainties of the 
chains of measures linking clock Hi to clock Hj.  

In the site-based uncertainty we use the same relation 
obtained from (4.2): 
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but we have to calculate the new expression of the 
correlation term: 
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the last term can be written using the differences of the 
clocks. 
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so the previous relation (10ter) becomes 
 
 

in our case  we assume 222
, jix uuu
ji

+=  so  
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This expression is very different from the corresponding 
expression based on the link-based assumption reported in  
[1]. We will present a brief example to show this relation. 
We consider three clocks with this topology: 

By the matrix analysis we obtain the uncertainty for each 
laboratory: 
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If we know the uncertainty 2
)(PTBUTCUTCu −  we can 

calculate the uncertainty for USNO laboratory using (11) and 
the scalar method:  
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and we obtain the same result of the matrix method. 

VI. THE APPLICATION TO UTC 
Starting from the examples above, the uncertainty of 

UTC-UTC(k) could be computed under the assumption that 
all uncertainties are link-based or under the assumption that 
they are entirely site-based. The data input are the values of 
uncertainty of the links presented in the Circular T (sec 6). 
To apply the site-based assumption and to obtain the 
uncertainty receiver by receiver we consider the relation 

222
, jix uuu
ji

+= . It has to be said that this equation is not 
always strictly valid because the same lab may act in 
different links appearing in Circular T and the listed 
uncertainty values are not always compatible with the 
complete list of corresponding equations 222

, jix uuu
ji

+= . 
When that happened, we took the minimal value of any lab 
uncertainty compatible with the series of equations 

222
, jix uuu
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+= . 

Using the Circular T 207 we have obtained the values for 
the uncertainty of UTC-UTC(k) with both methods as shown 
in Table 1. The difference for PTB laboratory is about 10%. 
Both methods agree to a very large extent.  
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TABLE I.   THE UNCERTAINTIES OF ALL LABORATORIES 
PARTICIPATING TO UTC COMPUTED ASSUMING THE UNCERTAINTIES ARE 

EITHER ENTIRELY SITE-BASED OR ENTIRELY BASELINE-BASED . DATA 
TAKEN FROM CIRCULAR T 207. 

u[UTC – UTC 
(k)]/ns 

u[UTC – UTC 
(k)]/ns k 

Link-
based 

Site-
based 

k 
Link-

Based 
Site-

based 
AOS 5.4 5.4 NIST 4.9 4.9
APL 5.5 5.5 NMC 20.4 20.4
AUS 7.2 7.0 NMIJ 6.9 6.8
BEV 5.4 5.4 NMLS 20.6 20.6
BIRM 20.6 20.5 NPL 2.6 2.6
CAO 7.4 7.3 NPLI 20.2 20.2
CH 5.3 4.6 NRC 15.1 15.1

CNM 20.9 20.8 NTSC 6.9 6.8
CNMP 8.2 8.2 OMH 20.2 20.2
CSIR 20.3 20.2 ONBA 8.8 8.8
DLR 5.3 4.7 ONRJ 21.2 20.9

DTAG 10.5 10.5 OP 1.9 1.9
HKO 7.2 7.0 ORB 5.3 4.7
IEN 2.0 2.0 PL 5.3 5.4

IFAG 5.3 4.6 PTB 1.7 1.9
IGMA 20.5 20.5 ROA 5.3 5.3
INPL 10.9 10.9 SCL 11.5 11.4
JATC 21.2 21.1 SG 20.4 20.2

JV 20.7 20.7 SMU 20.7 20.6
KRIS 7.0 6.8 SP 9.9 9.6
LDS 20.2 20.2 SU 6.0 6.0
LT 5.4 5.4 TCC 21.0 20.8

MSL 20.5 20.0 TL 6.6 6.5
NAO 20.3 20.2 TP 5.8 5.8
NICT 4.3 4.1 UME 25.1 25.0
NIM 20.2 20.0 USNO 1.7 1.8
NIMT 20.5 19.9 VSL 2.0 2.0

 

Remark: The difference of the results based on the  two 
assumptions is very small. The largest difference is about 
13%. The main difference comes from the different 
treatment of the “sandwich cases” (Example 3). In the site-
based assumption the contribution of the central lab in the 
sandwich disappears, in the link-based assumption it 
remains. This difference is due to effect shown in the 
example 3 where two important pivots are linked with GPS 
receiver. In the real current network configuration we have 
the NICT laboratory linked with PTB using the GPSP3 
equipment and NIMT, MSL etc. linked with NICT using the 
same equipment. In the site–based case the uncertainty due 
to the common NICT equipment, due to the sandwich case, 
completely disappears in the computation of the uncertainty 
of UTC-UTC(NIMT)  indeed, in the link-based case, we have 
to maintain this contribution. Under the site-based 
assumption, the uncertainty of the laboratories connected by 
a sandwich case is smaller than the evaluation obtained 

assuming the uncertainty is link-based. The other differences 
between the two assumption results are due to the 
uncertainty of PTB which plays different role as shown in  
the Examples 1 and 3 but, since PTB equipment uncertainty 
is very small, the resulting effect is in any case very small. 

VII. COMMENTS AND CONCLUSIONS 
In this work we have presented the refinement of the 

uncertainty of  [UTC – UTC (k)] calculation in a matrix 
formulation and distinguishing between site-based and 
baseline-based uncertainties by their correlation properties.  
With some simple examples we have shown the different 
contributions of the correlations and we have applied this 
method to real situation of UTC calculation. Using this 
different approach the results are numerically very similar to 
previous work [1]. This demonstrate that the presented 
analysis is quite sound and that the numerical computation of  
[UTC – UTC (k)] uncertainty is fairly  insensitive to the 
refinement in the interpretations of the contributions to the 
link uncertainties. 

However, additionally we should stress that: 

•   Link-based and site-based noise are both present. They 
are not mutually exclusive approximations, and their 
combined effect may be rather complex. 

•   Link equipment noise may or may not be dominant in 
the link uncertainty, it depends on each case. 

•   Further possible correlation between different equipment 
located in the same laboratory may exist. 

• Further possible correlation between different links 
involving the same lab may  exist. 

•   The pivot uncertainty has to be very small since it plays 
a very important role in two  types of  uncertainties described 
here.  
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