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Abstract 
 

We show that the leap second is due to timescale divergence between Universal Time 
(UT) and International Atomic Time (TAI) because the Système Internationale (SI) second is 
shorter than the UT second.  This is demonstrated by a thorough analysis of the procedures 
that were followed to produce Ephemeris Time (ET) to which the SI second was calibrated.  
This paper shows that time dilation is responsible for the ET second being shorter than the 
UT second.  Over the past century, it was well documented that observed lunar and 
planetary positions always lagged behind calculated positions.  ET was introduced to remove 
this discrepancy.  Deceleration of Earth’s rotation contributed less than 1% of this timescale 
divergence, according to paleontological records of tidal fraction.  Our calculation of the 
time dilation effect match the difference between the SI and UT seconds and also match the 
leap second insertion rate to within 0.2% since atomic time began in 1958.  A method to 
convert from the TAI timescale using a scalar to obtain a precise UT timescale is given with 
leap seconds needed only once every 14 decades due to tidal friction. 

 
 
Very little has been done to determine the effects of time dilation on old theories of celestial mechanics.  
Since these theories were developed before Einstein published his theory of General Relativity, none of 
them consider the effects of time dilation.  The question has some historical interest, but it also may have 
implications for contemporary work.  The theories considered in this paper are Simon Newcomb’s [1] 
theory of the Sun (equivalently, Earth) and E. W. Brown’s [2] lunar theory, both of which were 
established around one hundred years ago.  The results of our study may relate to the discrepancy between 
UT1 and TAI.  
 
A hundred years ago, a theory in celestial mechanics consisted of the development of expressions that 
were used to calculate the positions and velocities of planets and satellites in the solar system.  The 
coordinate system usually adopted was the ecliptic frame (longitude, latitude, and distance to a suitable 
origin) with adjustments included to transform from inertial to moving frames.  The time variable was 
assumed to be Greenwich Mean Time, later called Universal Time.  The expressions took the form of 
d’Alembert series, sums of terms in the form of a coefficient multiplying the sine or cosine of a sum of 
angles.  The angles were established in literal (as opposed to numeric) form, while the coefficients could 
be literal, numeric, or some combination of both.  Since most bodies in the solar system orbit close to the 
ecliptic plane, most of the motion is in the longitude coordinate, making its determination very important.  
The longitude coordinate, called the true longitude, was composed of a secular part, called the mean 
longitude, added to a periodic part in the form of d’Alembert series.  
 
An example of a secular part is Newcomb’s expression for the mean longitude of the Sun: 
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where T represents time in units of Julian centuries of 36525 mean solar days counted from Julian Date 
2415020.0.  The coefficient of T is called the mean motion.  It is a frequency that is correlated with the 
period known as the tropical year (the time it takes for the Sun to go from the mean vernal equinox of 
date to the succeeding one).  As such, it must include terms for the precession of the equinox.  A great 
deal of attention was (and is today) paid to establishing numerical values of the mean motions as 
accurately as possible in the theories of celestial mechanics.  The length of time for which a theory is 
useful depends on how well this frequency is known.  Thus, astronomers use as many observations as 
possible covering as long a time span as possible to obtain this numerical value with the utmost precision.  
 
It can be seen in the history of celestial mechanics that these theories did not match observations as well 
as expected.  The problem was that if one took a specific value of the time coordinate, T, and calculated 
the true longitude of the body from the formula, the calculated value would always be larger than the 
value observed at time T.  Theory was always ahead of calculation.  This problem was first noted by 
Edmund Halley [3] in the lunar theory and was examined by celestial mechanicians over the centuries.  
By the beginning of the 20th century, this problem was also well documented for the theory of the Sun and 
some of the planets.  In particular, Newcomb’s theories of the Sun, Mercury, and Venus showed these 
errors in the longitude, and Newcomb suggested that the problem may have something to do with the 
timescale of T.  And yet, the mean motions gave orbital periods that consistently matched the 
observations to the given level of precision.   
 
E. W. Brown tried to improve the lunar theory by developing literal expressions for the coordinates of the 
Moon.  One of the few numerical values adopted in his theory was the ratio of the mean motion of the 
Moon to that of the Sun.  It was based on centuries of observations and included a large number of recent 
occultation timings made by Adams [4].  Historically, this frequency ratio is one of the earliest quantities 
measured, since eclipse predictions depend on it.  Its value is very well established and known with a high 
level of precision.  And yet, after Brown finished the theory, it was checked by Brouwer and Eckert, who 
found that calculated longitudes were still ahead of observations [5].  
 
The work of Spencer Jones finally established that Newcomb’s idea that time might be the cause of these 
errors was correct.  First, Spencer Jones used the residuals between theory and observation to obtain 
polynomials in T that could be subtracted from the calculated mean longitudes to obtain the observed 
values [6].  As an example, Spencer Jones’ polynomial to correct the Sun’s mean longitude is 
 

 ΔLS = 1.00"+2.97"T + 1.23"T2. (2) 
 
T is measured in Julian centuries of UT1 from JD 2415020.0.  The difference, Eq. 1 minus Eq. 2, yielded 
a true longitude that matched the solar longitude observed at time T.  Comparison of similar formulas 
derived from residuals in the longitudes of Mercury, Venus, and the Moon, showed that these corrections 
were all proportional to the Sun’s formula [7].  This was evidence that the problem was in the timescale, 
UT1. 
 
In 1948, Clemence [8] published a paper that established the basis of Ephemeris Time.  In that paper, he 
obtains a quantity Δt that represents the difference between Universal Time and a so-called “Newtonian” 
time.  Newtonian time was Clemence’s name for a uniform timescale that could be used as the 
independent variable for the theories.  Clemence obtained Δt by multiplying Eq. 2 by the factor 24.349.  
The factor 24.349 is the number of UT seconds it takes for the Sun (Earth) to move 1" in mean longitude.  
To obtain this factor, consider the following: 
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 (1)  One Julian century contains 3155760000 seconds of UT1. 
 
 (2)  The frequency 129602768.13 from Eq. 1 is in units of arcseconds per century.  Dividing it by 
3155760000 gives the frequency 0.041068638974 in arcseconds per second. 
 
 (3)  The reciprocal of this value tells us the number of UT seconds it takes for the Sun (Earth) to 
move 1" in mean longitude, 1/0.041068638974 = 24.349 seconds. 
 
Thus, Clemence obtained the following formula that became the defining formula for Ephemeris Time 
(ET):  
 

 Δt = 24.349s + 72.3165s T + 29.949sT2 . (3) 
 
It should be mentioned that many of these early formulas contained a term with a parameter, B, that was 
intended to represent irregularities in the Earth’s rotation that could hopefully be determined from 
residuals in the Moon’s longitude.  These terms were removed by a resolution of the International 
Astronomical Union in 1954 [9].  Ephemeris Time was defined as the difference T–Δt. 
 
Atomic clocks were to be calibrated according to Ephemeris Time, i.e. 1 SI second should be equal to 1 
second of Ephemeris Time.  In order to calibrate the SI second, astronomers had to observe the positions 
of planets and satellites and deduce the value of ET from these observations.  All theories of planets and 
satellites had to be rewritten with ET as the independent variable, by replacing T with T-Δt in all 
formulas.  The Moon was the most convenient object to observe, and most of this calibration was done 
from observations of the Moon [10] made with the dual rate Moon camera designed by Markowitz at the 
U.S. Naval Observatory.  With the timescale adjustment, Brown’s original formula for the Moon’s mean 
longitude, 
 

 , (4) 32r
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is converted into  
 

 *L =  270○26'2.99" + 1336r307○52'59.31"T - 4.08"T2 + 0.0068"T3. (5) 
 

The superscript, r, stands for revolutions; one revolution equals 360o.  The symbol T represents centuries 
of UT from JD 2415020.0; it is the same time unit as used by Newcomb and Spencer Jones in Eqs. (1) 
and (2).  After the substitution, we have changed the symbol T to T in *L to indicate that the new 
independent variable represents centuries of Ephemeris Time.  Observations gave the coordinates of the 
Moon at a precisely determined value of T (UT1).  The corresponding value of T (ET) was deduced from 
a theory using *L for the mean longitude [11].  
 
Consider two positions on the lunar orbit.  Each of these is associated with a value of T, the time of the 
observation in UT, and with a value of T, the ET computed from the theory.  Clearly, the time interval 
measured in UT units is not equal to the time interval measured in ET units between the same two 
observations.  Because *L has a smaller frequency than LM, the ET interval has a larger numerical value 
than the UT interval.  This means that one second of Ephemeris Time will be shorter than 1 second of 
Universal Time.  (If the ET second is shorter, you will need to count more of them, yielding a larger 
numerical value than counting UT seconds to cover the same identical time span.)  Ignoring the quadratic 
and cubic terms in Eqs. (4) and (5), we obtain 
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(ET2 − ET1) − (UT2 − UT1)

(ET2 − ET1)
=

nM −*n
nM

= 2.292 ×10−8. (6) 

 
Ephemeris Time worked very well as the independent variable in the theories of celestial mechanics until 
it was replaced by Terrestrial Time and subsequent timescales, all of which are based on the SI second, 
which has the same length as the ET second according to Markowitz [12]. 
 
Timescales called proper time and coordinate time were introduced by Einstein in the theories of Special 
and General Relativity.  In a metric tensor used compute the orbits of the planets, the time coordinate, t, 
appearing there is called coordinate time and should be close to (if not equal to) the independent variable 
adopted by Newton in his theory of gravity.  The time coordinate, t, must represent a uniformly flowing 
timescale, for if it does not, any accelerations in the timescale could inject artificial accelerations into the 
positions and velocities of the planets, accelerations that were not due to gravity alone.  The space-time 
distance traveled by the planets, orbiting according to this metric tensor, is called proper time, τ (when 
divided by the speed of light).  Proper time is also defined as time kept by an observer from a clock 
traveling with him through space-time.  Thus, any spacecraft traveling through the solar system 
undergoing arbitrary accelerations is also keeping a version of proper time.  The many types of proper 
time are not necessarily equal.  Adopting this perspective, we may define UT1 as the proper time of an 
observer on spaceship, Earth.  The relation of proper time, UT1, to the coordinate time of the orbit 
theories can be given by a post-Newtonian metric of Nelson [13], that includes translational as well as 
rotational accelerations.  His metric, to second order in c, is 
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δij is the Kronecker delta, W is the time-dependent translational acceleration of the observer’s frame 
relative to an inertial frame, ω is the time-dependent angular velocity vector of the observer’s rotating 
frame compared to the inertial frame, φ and U

r
 are the scalar and vector potentials, respectively, r is the 

position vector from the observer to the origin of the reference frame of the spatial coordinates, x, and (ω 
x r)j is the jth component of that vector.  The speed of light is c.  We make the assumption that the spatial 
coordinates, x, the time, t, and all other quantities in Eq. 7 are referred to the same reference frame as is 
the metric used to determine the orbits.   
 
From Eq. 7, after consideration of the approximate values for all of these quantities, we arrive at the 
relation 
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Under our assumptions of the roles of proper and coordinate time, the limit of 
(ET2 − ET1) − (UT2 − UT1)

(ET2 − ET)
 approaches 1-dτ/dt as ET2-ET1 approaches 0.  Substitution into Eq. (8) with 

appropriate values for the orbit of the Earth gives 1- dτ/dt = 2.468×10-8, in close agreement with Eq. 6.  
The near agreement of these two numbers supports the argument that the effect of rewriting the theories 
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of celestial mechanics in ET was to rewrite them as functions of coordinate time, as opposed to proper 
time. 
 
Another interesting result of Eq. (8) is obtained by evaluating the accumulated difference between proper 
time and coordinate time over 1 year.  This is calculated by integrating Eq. (8) over 1 year, 
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Integration is best done using the eccentric anomaly E of an elliptic orbit.  We adopt the following:  
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where a is the semimajor axis and e is eccentricity.  Taking the definite integral over one anomalistic 
period with τ0 = 0 and t0 = tperihelion = 0 gives 
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Using accepted values for the parameters and scaling the anomalistic year to a tropical year, one obtains 

77875.0t −=−τ  seconds of ephemeris time per tropical year.  The average annual divergence between 
UT1 and TAI can be approximated by the difference (UTC – TAI), since UTC is always within 0.9 
seconds of UT1.  Between 1958 and 1999, UTC – TAI averages –0.7805 seconds/year, only 0.2% 
different from this calculation.  It is also interesting to observe the coefficient of T in Eq. 3, Clemence’s 
formula for Δt.  This coefficient is 72.3165 seconds/century.  Δt was subtracted from Universal Time to 
obtain Ephemeris Time.  Ignoring higher order terms in T, the formula for Δt shows that in one century, 
the two clock readings (UT and ET) should differ by 72.3165 seconds.  In the sense UT-ET, one should 
see an accumulated clock difference of –0.723165 seconds at the end of 1 year.  This number is also in 
close agreement with the observed average difference of UTC – TAI and is to be expected, since 1 second 
of TAI has the length of the SI second and the ET second. 
 
The close agreement between the calculated effects of time dilation and the observed differences between 
UT1 and TAI has caused us to speculate that the major source of the leap second is time dilation.  If this 
is the case, then the current establishment of UT1 should continue to show the difference, but it does not.  
We are presenting these results to the PTTI in the hope that our calculations may be confirmed and, if 
they are correct, that the current method to produce UT would be reexamined.   
 
Measurement of the deceleration of Earth’s rotation and the establishment of periodic variations in 
Earth’s rotation depend on the comparison of UT1 to a uniformly flowing coordinate time, such as those 
based on the SI second.  It is well established that the length of the UT second is increasing because of 
rotational deceleration due to tidal friction, but there is disagreement about the amount of this 
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deceleration.  In order to obtain the actual values of Earth’s rotational parameters, we must be sure that all 
time dilation effects are taken into account. 
 
A more complete analysis of these issues will appear in the Astronomical Journal sometime in 2007.  We 
are currently reexamining the ad hoc quadratic terms that have been added to the theories of celestial 
mechanics to see if they might be explained by time dilation.  The ad hoc quadratic terms may be the 
cause of the quadratic effect that has been measured between UT1 and coordinate time.  It is also possible 
that time dilation, not Earth’s rotational deceleration, may be the major reason for the problem with the 
timing of ancient eclipses.  
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