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Abstract 
 

Previous analyses of composite clocks have been presented with 2-state clock models for 
random clock phase and frequency deviations.  But Kalman filter estimate errors due to 3-state 
clock frequency-drift deviations have not been previously presented.  I have employed the 3-
state Zucca-Tavella clock model to simulate an ensemble of four 3-state clocks.  I have found a 
dominant common component for 3-state clock Kalman filter phase errors with the curvature of 
a nonlinear low-order polynomial that does not exist for 2-state clocks.  Cesium clocks are free 
of frequency-drift, but rubidium and hydrogen-maser clocks have significant frequency drift.  
Use of the 3-state clock model, and an understanding of its true and estimated behavior, will 
facilitate operation of the associated composite clock. 

  
 

I.  INTRODUCTION 
 

GPS Time is created by processing GPS pseudo-range measurements with the operational GPS Kalman filter. 
Brown [2] refers to the object created by the Kalman filter as the GPS Composite Clock, and to GPS Time as the 
Implicit Ensemble Mean phase of the GPS Composite Clock.  The fundamental goal by the USAF and the USNO 
is to control GPS Time to within a specified bound of UTC/TAI.  I present here a quantitative analysis of a 
simulated GPS Composite Clock, derived from detailed simulations and associated graphics.  GPS clock diffusion 
coefficient values used here were selected to enable a characterization of 3-state clocks that illuminate the effects 
of frequency-drift.  Diffusion coefficient values used for each of the four clocks S1, S2, N1, and N2 are presented 
in several of the initial figures.  S1 and S2 refer to ground station clocks.  N1 and N2 refer to NAVSTAR clocks. 
 
My interest in the GPS Composite Clock derives from my interest in performing real-time orbit determination1 for 
GPS NAVSTAR spacecraft from ground receiver pseudo-range measurements.  The estimation of NAVSTAR 
orbits would be incomplete without the simultaneous estimation of GPS clock parameters.  I use simulated GPS 
clock phase, frequency, and frequency-drift deviations, and simulated GPS pseudo-range measurements, to study 
Kalman filter estimation errors. 
 
I am indebted to Charles Greenhall (JPL) for encouragement and help in this work. 
 
 
II.  COMPLETE  ESTIMATION  AND  CONTROL  PROBLEM 
 
The USNO operates two UTC/TAI master clocks, each of which provides access to an estimate of UTC/TAI in 
real-time (1 pps).  One of these clocks is maintained at the USNO, and the other is maintained at Shriever Air 
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Force Base in Colorado Springs.  This enables the USNO to compare UTC/TAI to the phase of each GPS orbital 
NAVSTAR clock via GPS pseudo-range measurements, by embedding a UTC/TAI master clock in a USNO GPS 
ground receiver.  Each GPS clock is a member of (internal to) the GPS ensemble of clocks, but the USNO master 
clock is external to the GPS ensemble of clocks.  Because of this, the difference between UTC/TAI and the phase 
of each NAVSTAR GPS clock is observable.  This difference can be (and is) estimated and quantified.  The RMS 
(Root Mean Square) on these differences quantifies the difference between UTC/TAI and GPS Time.  Inspection 
of the differences between UTC/TAI and the phase of each NAVSTAR GPS clock enables the USNO to identify 
GPS clocks that require particular frequency-rate control corrections.  Use of this knowledge enables the USAF to 
adjust frequency rates of selected GPS clocks.  Currently, the USAF uses an automated bang-bang controller3 on 
frequency-rate. 
 
 
III.  STOCHASTIC  CLOCK  PHYSICS 
 
The most significant stochastic clock physics are understood in terms of Wiener processes and their integrals. 
Clock physics are characterized by particular values of clock-dependent diffusion coefficients, and are 
conveniently studied with aid of a relevant clock model that relates diffusion coefficient values to their underlying 
Wiener processes.  For my presentation here, I have selected “The Clock Model and Its Relationship with the 
Allan and Related Variances” presented as an IEEE paper by Zucca and Tavella [18] in 2005.  Except for FM 
flicker noise, this model captures the most significant physics for all GPS clocks.  I simulate and validate GPS 
pseudo-range measurements using simulated phase deviations, simulated frequency deviations, and simulated 
frequency-drift deviations according to Zucca and Tavella.  Figure 1 presents an ensemble of simulated random 3-
state clock phase deviations, overlaid with independently calculated 3σ boundaries. 
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Figure 1.  3-State clock phase simulations. 
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IV.  GRAPHICS  FOR  CASE  13 
 
True deviations for 3-state clocks were simulated for Case 13 and were used to construct GPS pseudo-range 
measurements.  The measurements were processed by the Kalman filter (KF1) described below with initial state 
estimate clock deviation errors.  The simulated (true) clock phase deviations and estimated clock phase deviations 
are presented in Figure 2.  Usually, one expects the phase estimates to lie close to the truth.  This is not the case 
here, because the clock phase deviations are not observable from the GPS pseudo-range measurements. 
Nonetheless, estimated clock phase deviations are created by KF1.  The simulated (true) clock frequency 
deviations and estimated clock frequency deviations are presented in Figure 3.  Inspection of Figure 3 helps to 
explain the divergence with time between true clock phase deviations and estimated clock phase deviations 
presented in Figure 2. 
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Figure 2.  Simulated & estimated phase deviates. 

 
 

The estimated clock deviations were subtracted from the true (simulated) clock deviations to enable inspection of 
KF1 estimation errors.  Estimation errors for the four clocks in phase, frequency, and frequency drift are presented 
in Figures 4, 5, 6, and 7.  Figure 4 is deceptive in that one might be led to believe the KF1 phase errors are smooth 
with time.  Figure 5 magnifies an interval of Figure 4 to demonstrate that KF1 phase errors are not smooth for 3-
state clocks.  Except for initial KF1 phase errors, Figure 4 demonstrates that most of the phase estimation errors 
for the four clocks S1, S2, N1, and N2 are similar.  These similar phase errors are the unobservable components 
of KF1 estimation error common to each clock.  Figure 5 enables identification of KF1 estimation errors that are 
independent for each clock with perturbations.  These perturbations are the observable components of KF1 
estimation errors.  Continued processing of GPS pseudo-range measurements will reduce the variances on the 
observable components. 
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The common unobservable phase component for the four clocks S1, S2, N1, and N2 has been estimated with a 
second Kalman filter (KF2).  This common phase component was subtracted from the KF1 phase error for S1 to 
enable identification of the observable component in KF1 phase error for S1.  The latter is presented in Figure 8. 
 
 
V.  KALMAN  FILTER 
 
I present my approach for the optimal sequential estimation of clock deviation states and their error covariance 
functions.  Sequential state estimates are generated recursively from two multidimensional stochastic update 
functions, the time update (TU), and the measurement update (MU).  The TU moves the state estimate and 
covariance forward with time, accumulating integrals of random clock deviation process noise in the covariance. 
The MU is performed at a fixed measurement time where the state estimate and covariance are corrected with new 
observation information. 
 
The sequential estimation of GPS clock deviations requires the development of a linear TU and nonlinear MU. 
The nonlinear MU must be linearized locally to enable application of the linear Kalman MU.  Kalman’s MU [9] 
derives from Sherman's Theorem [12,13,10]; Sherman's Theorem derives from Anderson's Theorem [1]; and 
Anderson's Theorem derives from the Brunn-Minkowki Inequality Theorem [14,5].  The theoretical foundation 
for my linearized MU derives from these theorems. 
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Figure 3.  Simulated & estimated frequency deviates. 
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VA.  INITIAL  CONDITIONS 
 
Initialization of all sequential estimators requires the use of an initial state estimate column matrix  and an 

initial state estimate error covariance matrix   for time t . 
0|0X̂

0|0P 0

 
 
VB.   LINEAR  TU  AND  LINEAR  MU 
 
Derivation and calculation for the discrete-time Kalman filter, linear in both TU and MU, is best presented by 
Meditch [10], Chapter 5. 
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Figure 4.  KF1 phase errors & KF2 UECC estimate. 

 
 
VC.   LINEAR  TU  AND  NONLINEAR  MU 
 
The simultaneous sequential estimation of GPS clock phase and frequency deviation parameters can be studied 
with the development of a linear TU and nonlinear MU for the clock state estimate subset.  This is useful to study 
clock parameter estimation, as demonstrated in Section VIII. 
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Let  denote an n × 1 column matrix of state estimate components, where the left subscript j denotes state 

epoch  and the right subscript i denotes time-tag for the last observation processed, where i , j є {0,1,2,…}. 

Let  denote an associated n × n square symmetric state estimate error covariance matrix (positive 
eigenvalues). 

ijX |
ˆ

jt

ijP |

it
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Figure 5.  KF1 phase errors & KF2 UECC estimate magnified. 

 
 
Linear  TU 
 
For k є {0,1,2,…,M}, the propagation of the true unknown n × 1 matrix state  is given by: kX

 
1 1,k k k k kX X+ + +1,kJ= Φ +    

 
where  is called the process noise matrix.  Propagation of the known n × 1 matrix state estimate  is 
given by: 

kkJ ,1+ kkX |
ˆ

1| 1, |
ˆ ˆ

k k k k k kX X+ += Φ  
  

because the conditional mean of  is zero.  Propagation of the known n × n matrix state estimate error 

covariance matrix  is given by: 
kkJ ,1+

kkP |
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1| 1, | 1, 1,
T

k k k k k k k k k kP P+ + += Φ Φ +Q +  
 

where the n × n matrix  is called the process noise covariance matrix4 . kkQ |1+

 
 
Nonlinear  MU 
 
Calculate the n × 1 matrix filter gain : 1+kK

1

1 1| 1 1 1| 1 1
T T

k k k k k k k k kK P H H P H R
−

+ + + + + + +⎡ ⎤= +⎣ ⎦  

The filter measurement update state estimate n × 1 matrix , due to the observation , is calculated with: 1|1
ˆ

++ kkX 1+ky

( )1| 1 1| 1 1 1|
ˆ ˆ ˆ

k k k k k k k kX X K y y X+ + + + + +
⎡ ⎤= + −⎣ ⎦  

where  is the scalar variance on the observation residual1+kR ( )kkk Xyy |11
ˆ

++ − , and ( )kkXy |1
ˆ

+  is a nonlinear 

function of .  Define the error  in : kk |1+X̂ 1|1
ˆ

++ kkXΔ X̂ 1|1 ++ kk

 

1| 1 1 1| 1
ˆ ˆ

k k k k kX X X+ + + +Δ = − +
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Figure 6.  KF1 frequency Errors. 
 

 
Define the n × n state estimate error covariance matrix  with: 1|1 ++ k
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( )( ){ }1| 1 1| 1 1| 1
ˆ ˆ T

k k k k k kP E X X+ + + + + += Δ Δ  

Bucy and Joseph [3] (page 141) recommend that  be calculated with: 1|1 ++ kkP

T
 

1| 1 1|k k k kP P+ + += −  
where: 

1
1| 1 1 1 1|

T
k k k k k k kT P H R H P−
+ + + + += %  

has symmetry, and: 

1 1 1| 1
T

k k k k k 1kR H P H R+ + + + += +%  
 
Calculation of  by the last three equations is numerically symmetric. They reduce to the form given by 
Kalman: 

1|1 ++ kkP

[ ]1| 1 1 1 1|k k k k k kP I K H P+ + + + += −  
 

which is not numerically symmetric. 
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Figure 7.  KF1 drift errors. 

 
 

VD.   NONLINEAR  TU  AND  NONLINEAR  MU 
 
Refer to Subsection Nonlinear MU of Section VC for the nonlinear MU. 
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Nonlinear TU 
 
The nonlinear TU always spans a non-empty time interval and requires the use of a numerical state estimate 
integrator xϕ .  Given an initial time , a final time , and a force model 0t ft ( )( )ttXu ,ˆ , then xϕ  propagates the 

state estimate  from  to t  using forces ( )0
ˆ tX 0t f ( )( )tX̂ t ,u  to get ( )ftX̂ .  That is: 

( ) ( ) ( )( ){ }0 0 0
ˆ ˆ ˆ; , , , ,f x f fX t t X t t u X t tφ τ τ= ≤τ ≤  

This can be shortened to write: 

( ) ( ){ }0 0
ˆ ˆ; ,f x fX t t X tφ= t  

where the use of force function ( )( )ttX ,ˆu x is tacitly implied.  Thus, ϕ  is a column matrix with n elements: 
 

1

2

3

x

x

z x

xn

φ
φ

φ φ

φ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M

 

 
VE.   KALMAN  FILTER  ADVANTAGE 
 
Severe computational problems are incurred in any attempt to estimate unobservable states using iterated batch 
least-squares methods or iterated maximum likelihood methods for navigation, because state-sized inversions of 
singular matrices are always required.  Here, the Kalman filter is distinguished in that estimates of unobservable 
states can be created and used without matrix inversion problems, because the Kalman filter MU is free of state-
sized matrix inversions. 
 
By design, one typically estimates observable states.  But the Kalman filter enables one to create unobservable 
states.  The USAF chose to create unobservable GPS clock parameter states for construction of GPS Time. 
 
 
VI.   KALMAN  FILTERS  KF1  AND  KF2 
 
I have simulated GPS pseudo-range measurements for two GPS ground-station clocks S1 and S2, and for two 
GPS NAVSTAR clocks N1 and N2.  Here, I set simulated measurement time granularity to 30 s for the set of all 
visible link intervals. Visible and non-visible intervals are clearly evident in Figure 8.  I set the scalar root-
variance R  for both measurement simulations and Kalman filter KF1 to 1=R  cm.  Typically 1=R  m for 
GPS pseudo-range, but when carrier-phase measurements are processed simultaneously with pseudo-range, the 
root-variance is reduced by two orders of magnitude.  So the use of  1=R  cm enables me to quantify lower 
performance bounds for the simultaneous processing of both measurement types. 
 
VIA.  CREATE  GPS  CLOCK  ENSEMBLE 
 
Typically, one processes measurements with a Kalman filter to derive sequential estimates of a multidimensional 
observable state.  Instead, here I imitate the GPS operational procedure and process simulated GPS pseudo-range 
measurements with KF1 to create a sequence of unobservable multidimensional clock state estimates.  Clock state 
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components are unobservable from GPS pseudo-range measurements.  See Figure 2 for an example of an 
ensemble of estimated unobservable clock phase deviation state components created by KF1. 
 
Sherman's Theorem 
 
GPS Time, the unobservable GPS clock-ensemble mean phase, is created by the use of Sherman's Theorem 
[10,15] in the USAF Kalman filter measurement update algorithm on GPS range measurements.  Satisfaction of 
Sherman's Theorem guarantees that the mean-squared state estimate error on each observable state estimate 
component is minimized.  But the mean-squared state estimate error on each unobservable state estimate 
component is not reduced.  Thus, the unobservable clock phase deviation state estimate component common to 
every GPS clock is isolated by application of Sherman's Theorem.  An ensemble of unobservable state estimate 
components is, thus, created by Sherman's Theorem – see Figure 2 for an example. 
 
 
VIB.   INITIAL  CONDITION  ERRORS 
 
A significant result emerges due to the modeling of Kalman filter (KF1) initial condition errors in phase, 
frequency, and frequency-drift. Initial estimated clock phase deviations are significantly displaced by the KF1 
initial condition errors in phase.  As time evolves, estimated clock phase deviation magnitudes diverge 
continuously and increasingly when referred to true (simulated) phase deviations, and this is due to filter initial 
condition errors in frequency and frequency drift.  See Figures 3 and 2 for an example. 
 
VIC.   PARTITION  OF  KF1  ESTIMATION  ERRORS 
 
Subtract estimated clock deviations from simulated (true) clock deviations to define and quantify Kalman filter 
(KF1) estimation errors.  Adopt Brown’s additive partition of KF1 estimation errors into two components.  I refer 
to the first component as the Unobservable Error Common to each Clock (UECC), and to the second component 
as the Observable5 Error Independent for each Clock (OEIC).  Initially, the variances on the UECC and OEIC are 
identical.  On processing the first GPS pseudo-range measurements with KF1, the variances on both fall quickly. 
But with continued measurement processing, the variances on the UECC increase without bound, while the 
variances on the OEIC approach zero asymptotically. 
 
For simulated GPS pseudo-range data, I create an optimal sequential estimate of the UECC by application of a 
second Kalman filter KF2 to pseudo-measurements defined by the phase components of KF1 estimation errors. 
 
Since there is no physical process noise6 on the UECC, an estimate of the UECC can also be achieved using a 
batch least-squares estimation algorithm on the phase components of KF1 estimation errors – demonstrated 
previously by Greenhall [6,7]. 
 
VID.  UNOBSERVABLE  ERROR  COMMON  TO  EACH  CLOCK 
 
There are at least four techniques to estimate the UECC when simulating GPS pseudo-range data.  First, one 
could take the sample mean of KF1 estimation errors across the clock ensemble at each time and form a sample 
variance about the mean; this would yield a sequential sampling procedure, but where each mean and variance is 
sequentially unconnected.  Second, one can employ Ken Brown's Implicit Ensemble Mean (IEM) and covariance; 
this is a batch procedure requiring an inversion of the KF1 covariance matrix followed by a second matrix 
inversion of the modified covariance matrix inverse; this is not a sequential procedure.  Third, one can adopt the 
new procedure by Charles Greenhall [7] wherein KF1 phase estimation errors are treated as pseudo-
measurements, and are processed by a batch least-squares estimator to obtain optimal batch estimates and 
covariance matrices for the UECC.  Fourth, one can treat the KF1 phase estimation errors as pseudo-
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measurements, invoke a second Kalman filter (KF2), and process these phase pseudo-measurements with KF2 to 
obtain optimal sequential estimates and variances for the UECC.  I have been successful with this approach. 
 
Figure 4 presents the S1, S2, N1, N2 ensemble of KF1 phase estimation error functions, overlaid with the KF2 
sequential UECC estimated function in phase.  The KF2 UECC estimated function is appropriate only for KF1 
clock phase errors, not for frequency or frequency drift.  Figures 6 and 7 present KF1 error functions in frequency 
and frequency drift. 
 
VIE.  OBSERVABLE  ERROR  INDEPENDENT  FOR  EACH  CLOCK 
 
At each applicable time, subtract the estimate of the KF2 phase UECC from the KF1 phase deviation estimate, for 
each particular GPS clock, to estimate the OEIC for that clock.  Figure 8 presents a graph of the phase OEIC for 
ground station clock S1.  Intervals of KF1 range measurement processing are clearly distinguished from 
propagation intervals with no measurements.  During measurement processing, the observable component of KF1 
estimation error is contained within an envelope of a few parts of a nanosecond. 
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Figure 8.  S1 observable component of phase errors. 

 
 
Calculation of the sequential covariance for the OEIC requires a matrix value for the cross-covariance between 
the KF1 phase deviation estimation error and the UECC estimation error at each time.  I have not yet been able to 
calculate this cross-covariance. 
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VII.   OBSERVABILITY 
 
I have defined observability in terms of a Kalman filter formulation, and I have proved simple theorems related 
thereto.  My definition of observability is different than Kalman’s definition and, unlike Kalman’s definition, is 
directly applicable to covariance matrices derived from a Kalman filter. 
 
VIIA.   DEFINITION 
 
If the state estimate error variance of a particular state estimate component is reduced by processing an 
observation, then that state estimate component is observable to that observation.  Otherwise, that state estimate 
component is not observable (unobservable) to that observation. 
 
VIIB.   THEOREM  1 
 
If every component of the row matrix    of measurement-state partial derivatives is zero at time   , then 

every component of the state estimate    is unobservable at time  t  . 
1+kH

1
ˆ

+kX
1+kt

1+k

 
Proof 

1 0kH + =  implies that . Thus none of the variances of 1| 1 1|k k k kP P+ + += 1|k kP +  are reduced due to processing the 

observation 1ky + .  Then by definition, 1
ˆ

kX +  is unobservable in every component. 
 
VIIC.   THEOREM 2 
 
Given values for scalars , ,  at time 1kH + 1| 0k kP + > 1 0kR + > 1kt + , and given that , then the scalar state 

estimate 
1 0kH + ≠

1
ˆ

kX +  is observable at time . 1kt +

 
Proof 
The obvious inequality  implies that: 2

1| 1 1 1| 1 0k k k k k k kP H R P H+ + + + ++ > >2

 

01
1

2
1|1

2
1|1 >

+
>

+++

++

kkkk

kkk

RHP
HP

 

Multiply through by -1: 
2

1| 1
2

1| 1 1

1 0k k k

k k k k

P H
P H R

+ +

+ + +

− < − <
+

 

Add 1: 

110
1

2
1|1

2
1|1 <

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−<

+++

++

kkkk

kkk

RHP
HP

 

Multiply through by : 1|k kP +

kkkk
kkkk

kkk PP
RHP

HP
|1|1

1
2

1|1

2
1|110 ++

+++

++ <
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−<  

Then: 
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kk
kkkk

kkk
kk P

RHP
HP

P |1
1

2
1|1

2
1|1

1|1 1 +
+++

++
++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

+
−=  

Therefore: 
kkkk PP |11|10 +++ <<  

 
Thus, the variance  is reduced due to processing the observation1|k kP + 1ky + .  Then the scalar state 1

ˆ
kX +  is 

observable by definition. 
 
VIID.  THEORETICAL  FOUNDATION 
 
These theorems are referred to expressions given by Kalman for filter gain  and covariance 1kK + 1| 1k kP + + . 
Kalman’s expressions are derived from the rigorous theorem chain provided by Sherman, Anderson, and Brunn-
Minkowski – the theoretical foundation is deep. 
 
VIIE.  DETERMINE  OBSERVABILITY  DIRECTLY 
 
Given an optimal sequential estimator, given a particular collection of applicable observations (real or simulated), 
and given realistic state estimate error covariance matrices 1|k kP +  and 1| 1k kP + +  at each time 1kt + , apply the 
definition of observability directly7 to distinguish between observable and unobservable state elements.  An 
optimal sequential estimator is designed to eliminate significant aliasing between estimated state elements and, 
thus, enable this distinction. 
 
 
VIII.  UNOBSERVABLE  GPS  CLOCK  STATES 
 
GPS Time is created by the operational USAF Kalman filter by processing GPS pseudo-range observations.  GPS 
Time is the mean phase of an ensemble of many GPS clocks, and yet the clock phase of every operational GPS 
clock is unobservable from GPS pseudo-range observations, as demonstrated below.  GPS NAVSTAR orbit 
parameters are observable from GPS pseudo-range observations.  The USAF Kalman filter simultaneously 
estimates orbit parameters and clock parameters from GPS pseudo-range observations, so the state estimate is 
partitioned in this manner into a subset of unobservable clock parameters and a subset of observable orbit 
parameters.  This partition is performed by application of Sherman’s Theorem in the MU. 
 
VIIIA.  GPS  PSEUDO-RANGE  REPRESENTATION 
 
Let  denote time8 of radio wave transmission for the  NAVSTAR clock, and let  denote time of radio 

wave receipt for the  ground station clock.  Let 

Nh
Tt

thh Gi
Rt

thi ˆNh
TxΔ  and ˆGi

RxΔ  denote Kalman filter estimation errors in clock 

phase for  and .  Define time of transmission difference Nh
Tt

Gi
Rt

D
Tt  and time of receipt difference D

Rt : 
 

ˆDh Nh N
T T Tt t xδ= − h  

ˆDi Gi G
R R Rt t x iδ= −  

Thus: 
ˆNh Dh Nh

T T Tt t xδ= +  
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ˆGi Di Gi
R R Rt t xδ= +  

 
Define the one-way GPS pseudo-range measurement NhGiρ : 
 

( ) Nh
T

Gi
R

Nh
T

Gi
RNhGi ttttc >−= ,ρ  

Then: 

( )ˆ ˆDi Gi Dh Nh
NhGi R R T Tc t x t xρ δ δ⎡ ⎤ ⎡ ⎤= + − +⎣ ⎦ ⎣ ⎦  

 

( )ˆ ˆDi Dh Gi Nh
R T R Tc t t x xδ δ⎡ ⎤ ⎡ ⎤= − + −⎣ ⎦ ⎣ ⎦  

 
where c is speed of light in vaccua.  Define: 
 

Di D
R Tt t tΔ = − h  

Nh
T

Gi
R

hi xxt ˆˆ δδδ −=  
Then: 

( )hi
NhGi ttc δρ +Δ=  

 
where  is deterministic and tΔ tδ  is random. 
 
VIIIB.  PARTITION  OF  KALMAN  FILTER  ESTIMATION  ERRORS 
 
Let Cx  denote the phase component of Kalman filter estimation error that is common to every GPS ensemble 

clock, when it exists.  Define phase differences Gi
OR

Nh
OTx  and x  with: 

 

C
Gi
R

Gi
OR xxx −= ˆδ  

C
Nh
T

Nh
OT xxx −= ˆδ  

 
for ground station i and NAVSTAR h .  Then Kalman filter estimation errors ˆGi

Rxδ  , { }1, 2,i∈ K , for ground 

station clocks and ˆNh
Txδ , { }1, 2,h∈ K , for NAVSTAR clocks have the additive partition9: 

 
Gi
ORC

Gi
R xxx +=ˆδ  

Nh
OTC

Nh
T xxx +=ˆδ  

 
VIIIC.  THE  COMMON  RANDOM  PHASE  COMPONENT  IS  UNOBSERVABLE 
 
With substitutions: 

Nh
T

Gi
R

hi xxt ˆˆ δδδ −=  
[ ] [ ]Nh

OTC
Gi
ORC xxxx +−+=  

Nh
OT

Gi
OR xx −=  

Then: 
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[ ]( )Nh
OT

Gi
ORNhGi xxtc −+Δ=ρ  

 
Thus, the random phase component Cx  that is common to the Kalman filter estimation error for every ensemble 
clock has vanished in the range representation NhGiρ .  Variations CxΔ  in Cx  cannot cause variations NhGiρΔ  in 

NhGiρ : 

C
C

NhGi
NhGi x

x
Δ

∂
∂

=Δ
ρρ  

 
because the partial derivative  H = /NhGi Cxρ∂ ∂  is zero: 
 

0=
∂
∂

C

NhGi

x
ρ

 

 
I have thus shown that Cx  is unobservable from NhGiρ . But the architect who designs the complete estimator 
must design an optimal NAVSTAR orbit estimator to prevent aliasing from NAVSTAR orbit estimation errors 
into Cx . It helps to know that there is no coupling between the orbit and Cx  in the complete state transition 
function. I have provided a new method herein to identify this aliasing, and I have provided suggestions on where 
to look for inadequate modeling that would be the source of this aliasing. See Section X. 
 
VIIID.  INDEPENDENT  RANDOM  PHASE  COMPONENTS  ARE  OBSERVABLE 
 
The independent phase deviations Gi

ORx  and Nh
OTx  are observable to GPS pseudo-range observations because their 

partial derivatives are non-zero: 

c
xGi

OR

NhGi +=
∂
∂ρ

 

c
xNh

OT

NhGi −=
∂
∂ρ

 

 
Estimation of Gi

ORx  and Nh
OTx  by the Kalman filter will reduce their error variances. 

 
 
IX.  ALLAN  VARIANCE  AND  PPN  RELATIONS 
 
IXA.  ALLAN  COEFFICIENTS  VS.  DIFFUSION  COEFFICIENTS  FOR  2-STATE  CLOCKS 
 
Denote τ  as clock averaging time, ( )2

yσ τ  as Allan variance,  as Allan’s FMWN coefficient,  as Allan’s 

FMRW coefficient, 
0a 2a−

1σ  as the FMWN diffusion coefficient, and 2σ  as the FMRW diffusion coefficient.  Then: 
 

( ) τστστττσ 2
2

12
12

1
0

2

3
1

+=+= −
−

− aay  

where: 
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01 a=σ  

22 3 −= aσ  
 
Notice that ( )2

yσ τ  depends only on the time difference 1kt tkτ += − , not on the time  for 2-state clocks. kt
 
Proportionate  Process  Noise (PPN) 
 
Let α  denote a variable { }1, 2,3, , Nα ∈ K  to identify each GPS clock in an ensemble of N clocks.  For each 

clock α , define the ratio Sα  between diffusion coefficients 1ασ  and 2ασ : 
 

0    , 1
1

2 >= α
α

α
α σ

σ
σS  

 
Then PPN is defined when, for each GPS clock α  and each associated ratio Sα , we have: 
 

NSSSS ==== L321  
 
IXB.  ALLAN  COEFFICIENTS  VS.  DIFFUSION  COEFFICIENTS  FOR  3-STATE  CLOCKS 
 
The reader is referred to Zucca-Tavella [18] Equation 43 for the time-dependent representation of the Allan 
variance: 
 

( ) 32
3

2
2

12
1

2

20
1

3
1 τστστστσ ++= −

y  

[ ]( )233
2232

3 2
1

2
1

3
1

kk tct +++⎟
⎠
⎞

⎜
⎝
⎛ ++ τμτττσ  

 
where  and 3c 3μ  denote initial condition and deterministic mean for frequency drift. 
 
Case 13 
 
For Case 13, the diffusion coefficient values 1ασ  and 2ασ  are the same for each simulated clock 2 1/Sα α ασ σ= , 

{ }1, 2,3, 4α ∈ : 
14 s 10667.1 −−×=αS  

 
But PPN has not been defined for 3-state clocks. 
 
 
X.  IDENTIFY  NON-CLOCK  MODELING  ERRORS 
 
My interest in the GPS NAVSTAR (SV) orbit determination problem, combined with that of the clock parameter 
estimation problem, has enabled the identification of a useful diagnostic tool:  Given realistic values for diffusion 
coefficients for each of the real GPS clocks, then quantitative upper bounds can be calculated on OEIC 
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magnitudes.  These calculations require the use of a rigorous simulator.  Existence of significant cross-
correlations between GPS clock phase errors and other non-clock GPS estimation modeling errors enables 
significant aliasing into GPS clock phase estimates during operation of KF1 on real data.  But given rigorous 
quantitative upper bounds on OEIC magnitudes, then significant violation of these bounds when processing real 
GPS pseudo-range and carrier-phase data identifies non-clock modeling errors related to the GPS estimation 
model.  Modeling error candidates here include NAVSTAR orbit force modeling errors, ground antenna modeling 
errors (multipath), and tropospheric modeling errors.  NAVSTAR orbit force modeling errors include those of 
solar photon pressure, albedo, thermal dump, and propellant outgassing.  The accuracy of this diagnostic tool 
depends on the use of realistic clock diffusion coefficient values and a rigorous clock model simulation capability. 
 
 
XI.  UNOBSERVABLE  MEAN  PHASE 
 
In an earlier version of my paper, I reported on KF1 validation results where clock S1 was specified as a 
TAI/UTC clock, external to the GPS clock ensemble consisting of S2, N1, and N2.  This brought observability to 
S2, N1, and N2 clock states from GPS pseudo-range measurements, drove clocks S2, N1, and N2 immediately to 
the TAI/UTC timescale, and enabled a clean validation of my filter implementation.  Also, it raised the question: 
Why not do the same thing for the real GPS clock ensemble?  Discussions with Ed Powers (USNO) and Bill 
Feess (Aerospace Corporation) reveal that this approach was tried and discarded after the difficulty in recovery 
from an uplink hardware failure was blamed on the use of a single TAI/UTC Master Clock.  This issue was 
resolved with Kenneth Brown’s introduction of the implicit ensemble mean.  The mean phase (GPS Time) of the 
GPS clock ensemble will remain unobservable to GPS pseudo-range measurements in the USAF Kalman filter for 
the foreseeable future. 
 
 
NOTES 
 

1. James R Wright is the architect of ODTK (Orbit Determination Tool Kit), a commercial software product 
offered by Analytical Graphics, Inc. (AGI). 

2. Session IX, Paper 34. 
3. According to Bill Feess, an improvement in control can be achieved by replacing the existing “bang-bang 

controller” with a “proportional controller.” 
4. See Zucca and Tavella [18] for concrete clock examples of  1,k kJ +  and 1,k kQ + . 
5. Observability is meaningful here only when processing simulated GPS pseudo-range data. 
6. I apply sufficient process noise covariance for KF2 to mask the effects of double-precision computer 

word truncation.  Without this, KF2 does diverge. 
7. Note that this is impossible using Kalman’s definition of observability. 
8. Refer all times to a coordinate time, e.g., to GPS Time.  Appropriate transformations between proper time 

and coordinate time must be performed in the operational algorithms, but state estimate observability is 
independent of relativity, so observability can be defined and discussed independent of relativity. 

9. This partition was introduced by Kenneth Brown [2]. 
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