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Abstract 
 

Minimum norm quadratic unbiased estimation, or MINQUE, is a method for improving the 
variance estimates of noise components in a Gauss-Markov least-squares problem.  This study 
treats a simple special case: estimating the two noise levels of a clock whose phase noise is the 
sum of white FM and random walk FM.  Given prior estimates of the noise levels, perhaps from 
an Allan deviation plot, MINQUE calculates new estimates and their uncertainties.  Although 
the original MINQUE calculation on N data takes O(N2) space and O(N3) time, it can be done 
sequentially in bounded space and O(N) time.  The method is applied to data from a simulation 
and from a comparison of two hydrogen masers. 

 

  

INTRODUCTION 
 
Having observed time deviations (or “phase”) ( )x t

y

 of a clock or pair of clocks, one may wish to fit the 

noise levels  of a power-law spectral model, , where .  This is often 
done graphically by identifying regions of constant slope on log-log plots of frequency stability 
deviations, including Allan deviation, Hadamard deviation, and their modified forms that use interval 
averages 

hα ( ) 2

2
S f h f α

αα =−
=∑ /y dx dt=

x  instead of point values ( )x t .  Objective statistical procedures for estimating the and their 
uncertainties have been devised.  Tryon and Jones [1] estimated the noise levels of an ensemble of several 
cesium clocks by maximizing the likelihood function of the residuals of a Kalman filter operating on the 
clock differences.  In the “multivariance” methods, the data consist of estimates of several different 
frequency stability variances at a set of averaging times:  Vernotte et al. [2] estimated the noise levels by 
a weighted least-squares technique; Walter [3] estimated the noise levels and mean frequency drift rate by 
minimizing a cost function composed of certain chi-squared statistics. 

hα

 
The present paper is an initial effort to exploit a general method of noise level estimation, called 
minimum norm quadratic unbiased estimation, or MINQUE, invented by the statistician C. R. Rao [4].  
This is a method for improving the estimates of noise levels in a linear model , where z is a z Xb ε= +
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vector of observations, X is a known matrix, b  is a an unknown constant vector, and the noise vector  
has the form 

ε

1

k
ii iZσ

=∑ , where  are unknown nonnegative coefficients and the iσ iZ  are independent 

noise vectors with zero means and known covariance matrices.  MINQUE accepts prior estimates of  
and produces new estimates by a calculation that is invariant to . 

iσ
b

 
In the present application the term Xb  is absent; the noise is all there is.  We treat only a simple two-
parameter Gaussian noise model, in particular the phase of a clock with unknown levels of independent 
white FM (WFM) and random walk FM (RWFM) noises, sampled with period .  The mean drift rate is 
assumed to be zero.  The data for MINQUE consist of the second increments of the phase samples, along 
with prior estimates of the noise levels.  The first step of MINQUE is to normalize the unknown noise 
levels by the prior levels.  The second step is to prewhiten the data according to the prior noise model.  
The last step is to apply the MINQUE criterion to calculate new estimates of the noise levels (Theorem 1) 
and their uncertainties (Theorem 2).  We show examples using data from simulations and hydrogen maser 
measurements, and we see the effect of changing the prior noise levels.  We also try feeding the estimates 
back into MINQUE repeatedly as new priors.  The iterated estimates and their uncertainties appear to 
converge to reasonable limiting values independent of the original priors.  The Appendix shows results 
from a Monte Carlo trial of the iterated estimates. 

0τ

 
The original MINQUE calculation is a batch operation that does arithmetic on N N×  matrices, where N 
is the number of data.  After it was invented, statisticians discovered shortcuts [5–7] for carrying out the 
calculation in much less time and space.  For the case treated here, the entire calculation can be carried 
out sequentially in  time and little space.  A short summary of the algorithm is given below. (O N )
 
 
SETUP FOR A TWO-PARAMETER MINQUE 
 
The data are modeled as a stationary process 
 
  (1) ( ) ) ( )1 1 2 2 , 1 ,Z Z n n Nσ σ= +(n ,= K .z n
 
where .  The base processes 0iσ ≥ (i )Z n  are assumed to be independent Gaussian stationary moving-
average (MA) processes of form 
 
  (2) ( ) ( ) ( )0 1 1 , ,2,i i i i iZ n n nθ ν θ ν= + − =1i
 
where the  are known coefficients and the  are independent Gaussian random variables with 
mean zero and variance one. 

( )i nν

( ) ( ) ( )1 2

ijθ

 
SPECIAL  CASE:  WHITE  FM  +  RANDOM  WALK  FM 
 
Let a clock phase be modeled as x t x t x t= +

( ) 2
0 2yS f h h f −

−= +

, the sum of WFM and RWFM noises.  The 
corresponding frequency spectrum is .  We want to estimate  and  from  

samples 
0h 2h− N + 2

( )0x nτ .  Let  be their second increments, ( )z n

  (3) ( ) ( ) ( )( ) ( )( )0 0 02 1 2 , 1, ,z n x n x n x n n Nτ τ τ= − + + + = K ,
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which form a stationary process.  Unscaled dimensionless versions of the two components of  can be 
represented by the MA processes 

( )z n

 

  
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

1 (WFM)

1 (RWFM)

Z n n n

Z n n n

ν ν
ν βν

= − −

= + −
 
where 2 3β = − .  The correlation of ( )2Z n  and  is 1/4; this is the crucial property of (2 1Z n − ) 2Z  that 
makes it equivalent to the second increment of an integrated continuous-time random walk.  Now (1) 
holds, where 

 ( )
2 3

2 20
1 0 2 2 2

4,
2 3 1

h hτσ σ
β−= =

+
0 .π τ

N

 (4) 

 
NORMALIZING  BY  PRIOR  ESTIMATES 
 
Returning to the general case, we want to estimate  and  from the data .  The 
MINQUE method requires prior estimates , which are used to normalize the unknown .  Let 

1σ 2σ ( ) ( )1 , ,z zK

iσ0iσ >%

 

 ( ) ( ), ,i
i i i i ij

i

z n Z nσ .i ijγ σ α σ
σ

= = =%
%

θ%

−

 (5) 

 
Instead of (1) and (2), we work with the assumptions 
 
 , (6) ( ) ( ) ( )1 1 2 2z n z n z nγ γ= +

 . (7) ( ) ( ) ( )0 1 1 1 1i i iz n n nα ν α ν= +
 
The aim is to calculate estimates 2

îγ  of 2
iγ  from the data .  (It is possible for ( )z n 2

îγ  to come out 
negative.)  Then  is estimated by 2

iσ
 2 2 ˆˆi iσ σ 2

iγ= % . (8) 
 
In order to estimate and correct the overall scaling of the prior values , we give both iσ% iγ  an unknown 
prior value ζ  that will be estimated from the data.  Expectation and variance under the prior assumptions 

1 2γ γ ζ= =  are denoted by pE  and pvar . 

 
PREWHITENING  THE  DATA 
 
The data  will be transformed into new data  that are white under the prior assumptions.  Write ( )z n ( )y n
 
 , (9) ( ) ( ) T

1 ,i i iz z z N i= ⎡ ⎤ =⎣ ⎦K 1,2

 1 1 2 2z z zγ γ= + . (10) 
 
Define the  Toeplitz matrix ( 1N N× + )
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1 0

1 0

i i

i

i i

L
α α

α α

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

O  (11) 

 
and let , which is assumed to be positive definite.  By T

1 1 2 2T L L L L= + T (7), (10), and the prior assumptions, 
 
 T T T 2

pE , Ei i i iz z L L zz Tζ= = . 

 
By Cholesky factorization,  for a nonsingular lower-triangular L, which we use to reduce z to an 
approximation of white noise.  Let , .  From 

TT LL=
1y L z−= 1

i iy L z−= (10), 
  
 1 1 2 2y y yγ γ= + , (12) 
 
and  are independent mean-zero Gaussian vectors.  Let 1 2,y y
 
 . (13) TEi iV y y= i

i

i

Then 
 , (14) 1 T T T

i i i iV L L L L M M− −= =
where 
 1

iM L L−= . (15) 
The true covariance matrix of y is 
 T 2 2

1 1 2 2E yy V Vγ γ= + . (16) 
 
But, since , y is white under the prior assumptions: 1 T

1 2V V L TL I− −+ = =
 
 T 2

pE yy Iζ= . (17) 

 
 
MINQUE  ESTIMATORS 
 
MATRIX  PRELIMINARIES 
 
1.  Let A and B be real matrices of size m .  Regarded as vectors with mn components, their inner 
product is 

n×

 T

,
, tij ij

i j
A B a b AB= = r∑ , 

 
where tr is the trace operator.  The Frobenius norm of a matrix A is 
 
 2 T

,
, tij

i j
A A A a AA= = =∑ r . 
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2.  If A is symmetric and y is a column vector of correlated Gaussian random variables with , 
, then 

E 0y =
TE ijyy V v⎡ ⎤= = ⎣ ⎦

 TE , try Ay A V AV= = , (18) 
 Tvar 2 , 2 tr .y Ay AV VA AVAV= =  (19) 
 
Equation (19) can be proved using Isserlis’s formula [8], 
 
 . ( )cov ,i j k l ik jl il jky y y y v v v v= +

 
MINQUE  CRITERION 
 
A MINQUE estimator of 2

iγ   from the prewhitened data vector y of ( 1,2i =

iA
)

i

(12) is defined as a random 
variable , where  is a symmetric matrix chosen such that 2 T

î y A yγ = 2
îγ  is unbiased for 2

iγ  and has 
minimum variance under the prior assumptions 1 2γ γ ζ= = . 
 
MINQUE  SOLUTION 
 
We shall see that the MINQUE estimators do not depend on ζ .  One needs to know only the data vector 
y and the covariance matrices  that come from the prewhitening calculation. TEi i iV y y=
 
THEOREM 1.  Assume that  are linearly independent as 1 2,V V N N×   matrices.  Let 
 

 
T

1 1 1 2 1
T

2 1 2 2 2

, ,
,

, ,
V V V V y V y

S q
V V V V y V y

⎡ ⎤ ⎡ ⎤
= ⎢ ⎥ = ⎢ ⎥

⎣ ⎦⎣ ⎦
. (20) 

 
The unique MINQUE estimators of 2 2

1 2,γ γ  are given by 
 

 . (21) 
2

2 1
2
2

ˆ
ˆ :

ˆ
S q

γγ
γ

−⎡ ⎤
= =⎢ ⎥
⎣ ⎦

1

 
Proof.  Let  be symmetric.  By 1A (18) with  and V given by 1A A= (16), 
 
 T 2 2

1 1 1 1 2 1 2E ,y A y A V A Vγ γ= + , . 
 
By (19) with  and V given by 1A A= (17) under the prior assumptions, 
 
 2T 4

p 1 1var 2y A y Aζ= . (22) 

 
For  to be unbiased for T

1y A y 2
1γ  whatever the true values of 1γ  and 2γ , it is necessary and sufficient that 

 
 1 1 1 2, 1, ,A V A V= 0= , (23) 
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which is possible because of the linear independence assumption.  According to the MINQUE criterion 
and (22), we are supposed to minimize the matrix norm of  while keeping its matrix inner products 
with  and  fixed at 1 and 0.  The minimizing  is necessarily a matrix (an 

1A

1V 2V 1A 2N -vector) in the span of 
 and ; any component orthogonal to that span would increase the norm.  Thus,  for 

some coefficients .  A similar argument for  gives  for some .  Let 

.  Altogether we have 

1V

C

2V

⎤⎦

1 11 1 12A c V c V= +

21 22,c c
2

11 12,c c T
2y A y 2 21 1A c V= + 22 2c V

ijc⎡⎣= ,i j ijA V δ=  (Kronecker delta), and substituting for the  gives CS , 

.  The MINQUE estimates of the 
iA = I

1S −C = 2
iγ  are then 

 

  
( )
( )

2 T T
1 1 11 1 12 2 11 1 12 2

2 T T
2 2 21 1 22 2 21 1 22 2

ˆ

ˆ .

y A y y c V c V y c q c q

y A y y c V c V y c q c q

γ

γ

= = + = +

= = + = +
 

 
The original unknowns  are estimated by 2

iσ (8) from the prior estimates .  As mentioned earlier, 2
iσ% 2

îγ  
can be negative. 
 
ESTIMATED  MINQUE  COVARIANCE 
 
THEOREM 2.  Under the prior assumptions 1 2γ γ ζ= = , the MINQUE estimator 2γ̂  has covariance matrix 
 
 2

4 12R Sγ ζ −= . 

Proof.  Let  be as in the proof of Theorem 1.  For an arbitrary 2-vector , ,iA S C [ ]T
1 2u u u= , 

  
  ( )T 2 T T T

1 1 2 2 1 1 2 2ˆu u y A y u y A y y u A u A yγ = + = +
 
By (17) and (19), under the prior assumptions, 
  
 2T 2 4 4

p 1 1 2 2
,

ˆvar 2 2 ,i j i j
i j

u u A u A u u Aγ ζ ζ= + = A∑ . 

But  
 ( )

, ,
, ,i j ik jl k l ik kl jl ijij

k l k l
A A c c V V c s c CSC c= = =∑ ∑ =

1S −=
( )T 4 1

pvar 2u u S uγ ζ −=

42 Sζ 2ˆ

 

since C .  Thus, 
  T 2ˆ

 
for any u.  It follows that  is the prior covariance matrix of 1− .   γ
 
Under the prior assumptions, T 2/y y ζ  is a 2

N
2 Rχ  random variable, so let us estimate ζ  and 2γ  by 

 
 . (24) 2

2 T 4ˆ ˆ/ , 2y y N R Sγζ −= = 1ζ̂

2ˆiσ
 
According to (8), we can estimate the standard deviation of  from prior assumptions by 
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 ( )2
2 2

p
ˆˆstd i i ii
Rγσ σ= % . (25) 

 
Neither the estimates (8) of  nor their estimated standard deviations 2

iσ (25) change when the prior 
estimates  and  are multiplied by the same constant.  But the examples given below show that 1σ% 2σ% (25) 
is sensitive to multiplying them by different constants. 
 
 
EXAMPLES 
 
SIMULATED  NOISE:  WFM  +  RWFM 
 
A simulation of  values of  as given by 1000N =

-410×
( )z n (3) was generated with the parameters , 

, .  Results in the form of Allan deviation, 
0 1τ =

0 1h = 2 1.900h− =
 

 ( )
2

0 2 2
2 3y
h h π τσ τ
τ

−= +  (26) 

 
[9], are presented in Figures 1 and 2 for different prior values  and  mapped to  and  by 0h% 2h−

% 2
1σ% 2

2σ% (4).  
The black curve shows the Allan deviation for the true .  The figures also show the overlapped Allan 
deviation estimate for  with 68.3% confidence intervals calculated by the Stable software [10].  No 
confidence interval is calculated for the last point. 

hα

2nτ =

 
For Figure 1 we set prior estimates , , that is, , .  These give the prior 
Allan deviation shown by the red curve.  The blue curve is the Allan deviation 

0 0 / 2h h=%

2ˆiσ

2 2h h− =%
2−

ĥα

2
1 2γ =

d

2
2 1/ 2γ =

p ĥα

(26) from the estimates  
as mapped from the MINQUE estimates  by 

ĥα

(4).  The dashed blue curves are the Allan deviations for 
 and , where the estimated standard deviation st  is calculated from p

ˆ ˆstdh hα α+ p
ˆ stdhα − (25) and 

(4).  The lower curve terminates when it goes negative, because p 2 2
ˆ ˆh h− −st . d >
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Figure 1.  MINQUE estimate of simulated WFM + RWFM noise.  The prior noise level 
was set to half the true level for WFM, twice for RWFM. The error bars show the 
overlapped Allan deviation estimate. 
 
 

For Figure 2, we set , .  Now the 0 02h h=%
2 2 / 2h h− −=%

p1std±  limits for the RWFM component seem to be 

too tight.  For both cases, the WFM estimate  and its standard deviation are insensitive to the choice of 
prior estimates.  The RWFM estimate  is somewhat more sensitive to the priors, but is still a good 
estimate of .  Its estimated standard deviation is very sensitive to the priors, however. 

0̂h

2ĥ−

2h−

 
 

 
Figure 2.  The ratios of prior levels to true levels are reversed. 
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Figure 3.  After 5 feedback iterations from either set of original priors. 

 
 
ITERATED  FEEDBACK  OF  ESTIMATES   
 
Having calculated the MINQUE estimates, one can repeat the process with the same z data by using the 

 in the role of the prior  and calculating new MINQUE estimates of .  This process can be 
repeated indefinitely as long as both  are positive.  For the examples that the author has tried, the 
estimated  and standard deviations appear to converge to limits that are independent of the original 
priors.  The estimated normalizing factor 

ĥα hα
% hα

ĥα

ĥα

ζ̂  from (24) tends quickly to 1.  For the simulated data, Figure 
3 shows the result after 5 iterations.  By luck, the limiting RWFM estimate is close to the true value.  The 
standard deviation estimate looks reasonable in view of the Allan deviation confidence intervals.  There 
are two questions: 1) Is the limiting  unbiased?  2) How well does the limiting standard-deviation 
estimate represent the standard deviation of the limiting ?  To answer these questions empirically, one 
can collect statistics on the limiting estimates over many simulated realizations of the clock noises (see 
the Appendix). 

ĥα

ĥα

 
REAL  PHASE  NOISE:  TWO  HYDROGEN  MASERS 
 
Figure 4 shows overlapped Allan deviation with confidence intervals, the MINQUE estimate, and its 
estimated  limits for a 2-week comparison of two hydrogen masers in JPL’s Frequency Standards 
Laboratory.  The phase data 

1std±
( )x t  were subsampled to 15 minutes from an original sample period of 1 

second to get beyond the region of white and flicker phase.  Their second increments (3) constitute the 
data for MINQUE.  The overlapped Allan deviation estimate with error bars is also shown.  The red curve 
is Allan deviation from the prior noise parameters , , which were fit by 
eye from the Allan deviation estimates of the original data set.  The prior WFM level seems too high for 
the subsampled data, and MINQUE adjusts it downward appropriately.  Although RWFM looks like a 
poor fit for the long-term behavior, MINQUE chooses a reasonable estimate of the noise level.  After five 
cycles of iterated feedback, the estimates do not change enough to make another plot worth showing. 

27
0 5 10 sh −= ×% 36 -1

2 7.45 10 sh −
− = ×%
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Figure 4.  Applying MINQUE to the phase difference of two H-masers, assuming a noise 
model of WFM + RWFM. 
 

 
SEQUENTIAL  MINQUE  ALGORITHM 
 
If no attention is paid to the special structure of the matrices, the prewhitening calculation for N data takes 

 time and  space.  The author was able to devise an iteration that calculates the S and q 

matrices of Theorem 1 from the z data and coefficients  in  time and bounded space.  For 

, the algorithm receives  and updates a small structure of scalars, 2-vectors, and 2  
matrices including , S, and q.  The details are available from the author.  For small values of n, 
equation 

( 3O N

1,2,n =

) )

ˆ

( 2O N

( )y n

ijα ( )O N

K ( )z n 2×

(21) can give negative values of 2
iγ ; this is of no concern and the iteration can proceed. 

 
 
CONCLUSIONS 
 
Several techniques were introduced while implementing this case of Rao’s MINQUE: 
 

• Applying the MINQUE criterion after prewhitening the data according to the prior estimates of 
noise levels; 

• Introducing and estimating a scaling factor ζ  as the prior value of the normalized noise levels; 
• Devising an ( )O N  algorithm for the calculation (as also claimed in [6]); 
• Estimating the noise level uncertainties; 
• Feeding the estimated noise levels back into the algorithm as new prior levels. 

 
The MINQUE method seems to work well for estimating the noise levels of the simple clock model of 
white FM plus random walk FM with no drift, giving lower RWFM uncertainty than overlapped Allan 
deviation does.  The method requires prior estimates of the noise levels as inputs; for best results, it seems 
advisable to feed the output estimates back into the algorithm as new priors at least once or twice.  The 
feedback experiments show empirically that the iteration converges to a fixed point not dependent on the 
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original priors.  The fixed point constitutes another estimate of the noise levels.  Properties of this 
estimate and its associated uncertainty matrix should be investigated theoretically and empirically (see the 
Appendix). 
 
The sequential version of the algorithm might be simplified by using a time-invariant filter for the 
prewhitening operation.  Perhaps the idea of applying the MINQUE criterion to prewhitened data could 
be extended to more complex situations with several noise components or several clocks. 
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APPENDIX:  EXPERIMENT  ON  ITERATED  MINQUE 
 
To investigate the properties of the fixed point of the MINQUE feedback iteration, 1000 independent 
realizations of 1000 values of WFM + RWFM noise were generated with the same noise levels h  as 
before.  For each realization, five feedback MINQUE iterations were run from randomized initial prior 
noise levels to get close to the fixed point.  Statistics were collected on the noise level estimates  and 
their estimated standard deviations.  Figure 5 shows the results. 

α

ĥα

 

 
 

Figure 5.  Experimental statistics of a case of iterated MINQUE. 
 

 
The left-hand plots show the histograms of  (top plot) and its estimated standard deviation (bottom 
plot), normalized by the true value ; the right-hand plots show similar histograms for .  For both 
noise levels, the sample mean of h  is close to the true value, and the sample standard deviation of  
(std value in top plots) is close to the sample mean of the standard deviation estimate (mean value in 
bottom plots).  The standard deviation estimate for  has a considerable spread, however. 

0̂h
0h

α̂

2ĥ−

ĥα

2ĥ−
 
Rao mentioned the possibility of MINQUE iteration [11]:  
 

These estimates may then be substituted in (3.15), and the MINQUE procedure repeated.  The whole 
process may be repeated several times, but then the property of unbiasedness is usually lost.  It is 
possible that the estimates so obtained may have other interesting properties. 

 
For the case investigated here, the iterated noise level estimates and their associated standard deviation 
estimates appear to be unbiased for practical purposes. 


