
41
st
 Annual Precise Time and Time Interval (PTTI) Meeting 

 

433 
 

RESSOX CONTROL OF QZSS DURING 

COMMUNICATION INTERRUPTION 

 
 

Toshiaki Iwata, Takashi Matsuzawa 

National Institute of Advanced Industrial Science and Technology (AIST) 

1-1-1 Umezono, Tsukuba Central 2, Tsukuba, Ibaraki 305-8568, Japan 

Tel: +81-29-861-5706, Fax: +81-29-861-5709 

E-mail: totty.iwata@aist.go.jp 

 

Akiyoshi Abei 

Cosmo Research Corporation, Japan 
 

Abstract 
 

The Remote Synchronization System for the Onboard Crystal Oscillator (RESSOX) is a new 

timekeeping method for the Japanese Quasi-Zenith Satellite System (QZSS), and a remote 

synchronization system for the onboard crystal oscillator of a satellite and the atomic clock of 

the ground station.  RESSOX is developed with an eye to replacing the onboard atomic clock.  

One of the serious problems of RESSOX is that the QZSS must have an approximately 35-

minute communication interruption twice a day to avoid interfering with the communication of 

other geostationary satellites when the QZS crosses the equator.  During the communication 

interruption, the onboard crystal oscillator will be controlled, not by RESSOX, but by an 

onboard local system.  Two control algorithms were proposed: (1) the averaging of adjacent 

voltage data and (2) the first-order extrapolation of adjacent voltage data prior to 

communication interruption.  As the behavior of the crystal oscillator is statistical, we 

attempted to apply a statistical method using our RESSOX hardware/software simulators for the 

evaluation.  At least 12 experiments/simulations were conducted for each case.  The standard 

deviations of the maximum synchronization errors during the 35-minute communication 

interruption between the onboard crystal oscillator of the satellite and the atomic clock of the 

ground station were compared.  The results of simulations and experiments correspond to 

each other.  In general, the results obtained by averaging show better synchronization than 

those obtained by first-order extrapolation.  The best result was given by the case of averaging 

100 adjacent voltage data, and the standard deviation of the maximum synchronization error 

was 2.80 ns. 

 

 

I.  INTRODUCTION 

 

The quasi-zenith satellite system (QZSS) has been under development as a Japanese space project since 

2003, and its mission is navigation and/or positioning [1].  Its constellation consists of three satellites 

orbiting on inclined orbital planes with a geosynchronous period.  The first QZS will be launched in the 

summer of 2010.  The QZSS utilizes a highly inclined orbit to ensure high visibility over high-latitude 

regions.  In the case of the QZSS, at least one satellite is highly visible near the zenith at any time from 

Japan.  Therefore, users in Japan can always receive navigation signals from at least one of the QZSs near 

the zenith.  
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In general, global navigation satellite systems (GNSSs), such as the GPS of the US, GLONASS of Russia, 

and GALILEO of Europe, are equipped with onboard atomic frequency standards that are used as time 

references.  This is because (1) atomic clocks have good long-term stability, (2) the orbit of the satellites 

makes monitoring from one ground station impossible, (3) these satellite systems are used for military 

missions and are, therefore, expected to operate even if ground stations are destroyed, and (4) these 

systems consist of many satellites, making the control of each satellite with many antennae difficult.  

However, onboard atomic clocks have the following disadvantages: they are bulky, expensive to 

manufacture and launch, power-demanding, and sensitive to temperature and magnetic fields.  Moreover, 

they are one of the main contributors to the reduction of satellite lifetime. 

 

The following have been taken into consideration in the design of the QZSS as a civilian navigation 

system: (1) some crystal oscillators have better short-term stability than atomic clocks [2], (2) 24-hour 

control from one station is possible if the location of the control station is appropriate, for example, 

Okinawa, Japan, and (3) the number of satellites is assumed to be only three.  Given these considerations, 

the remote synchronization system for the onboard crystal oscillator (RESSOX), which does not require 

onboard atomic clocks, has been developed.  In the case of RESSOX, modification of the control 

algorithm after launch is easy because it is basically a ground technology.  The target synchronization 

accuracy of RESSOX is set at 10 ns and the target stability is 1 10
-13

 at 100,000 s.  These targets were 

determined on the basis of the synchronization performance between GPS time and UTC (USNO) [3] and 

the long-term stability performance of onboard cesium atomic clocks [4]. 

 

RESSOX ground experiments and computer simulations have been conducted since 2003.  Preliminary 

experimental results obtained using navigation signals are detailed in our previous papers [5-8].  We have 

developed a feedback method that uses multiple navigation signals of the QZSS, and found that we do not 

need precise orbit information or estimation of delays, such as those caused by the ionosphere and the 

troposphere, to realize RESSOX technology.   

 

In actual QZSS operation, 35-minute communication interruption (CI) above the equator occurs twice a 

day because of the need to avoid interference with other geostationary earth orbit (GEO) satellites.  For 

RESSOX, the control method of the crystal oscillator during CI is an issue to be resolved, and is described 

in detail in this paper. 

 

In a practical sense, two rubidium atomic standards will be loaded on the QZSS.  RESSOX is tested in 

experiments to examine its use in future QZSSs. 

 

 

II.  RESSOX OVERVIEW AND CONTROL DURING CI 

 
Figure 1 shows the schematic of RESSOX.  In order to realize RESSOX, it is indispensable to identify 

the error factors and the feedback mechanism by measuring the delay at the ground station.  The former is 

related to the estimation of error and delay using models, and is considered to be a feed-forward loop.  

The RESSOX control signal includes time information of the ground atomic clock, and is advanced to 

compensate the transmission delay.  Therefore, the RESSOX control signal is synchronized with the 

ground atomic clock when it arrives at the QZS. 

 

The latter is an error adjustment system that uses pseudoranges measured with the QZS signals (navigation 

signals) of the QZSS and estimated pseudoranges, and is considered to be a feedback control. 

 

The error and delay models in the feed-forward loop are delays in the ground station and in the satellite, 
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tropospheric delay, ionospheric delay, delay due to distance (orbit estimation), delay due to relativity 

effects, and errors caused by Earth’s motion, such as daily rotation, nutation, and precession.  These 

problems were discussed in our previous paper [5].  However, if multiple navigation signals are used for 

feedback, use of the delay models becomes unnecessary [7, 8]. 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1.  RESSOX schematic. 

 

 

When CI occurs, the applied voltage data immediately before the CI are used to control the onboard crystal 

oscillator.  Two strategies are prepared: simple averaging and first-order extrapolation.  The number of 

voltage data used is changed from 50 to 100, 200, 300, 500, and 1000 (the voltages are applied every 1.5 s) 

and evaluated in this study, although the number in actual operation will be limited to 100 and 200.  

Figure 2 shows the schematic of the control method. 

 

 

III.  COMPUTER SIMULATION OF RESSOX BEHAVIOR DURING CI 
 

SIMULATION METHOD 
 

Figure 3 shows the block diagram of the computer simulation.  First, the onboard crystal oscillator is 

modelled.  The pure crystal oscillator outputs 10.23 MHz when the control voltage is 5.4 V, and the 

frequency increases by 0.33 Hz when the control voltage increases by 1 V.  The output frequency of the 

crystal oscillator is formulated as follows: 

 

 )4.5(33.010023.1 7 Vfc [Hz]. (1) 
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Fig. 2.  Schematic of the control method. 

 

 

The pure time standard model outputs the frequency as 
710023.1sf Hz. 

 

The n-th time difference result tn of pure Time Comparison Unit (TCU) is modelled as follows: 

 

 
s
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nn
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ff
tt 5.11  [s].  (2) 

This is because the time difference is measured every 1.5 s. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3.  Block diagram of computer simulation. 

 

 

The actual crystal oscillator, the time standard, and the TCU generate noise.  To formulate the noise 

model, the Allan deviation of the crystal oscillator used in the experiment is measured.  The result is 
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shown in Fig. 4 with a blue line.  Using Stable 32 software that generates various noises and simulates the 

behavior of the crystal oscillator, the crystal oscillator is modelled as follows: Random Walk FM is 3.0 

×10
-14

, Flicker FM is 4.0×10
-13

, White PM is 4.0×10
-13

, and Drift per 1.5 s is 1.5×10
-12

, and the result is 

shown in Fig. 4 with a pink line.  The TCU will have 0.16 ns white PM noise every 1.5 s (White PM is 

2.5×10
-10

).  Finally, the total noise model including TCU is as follows: Walk FM is 3.0×10
-14

, Flicker FM 

is 4.0×10
-13

, White PM is 2.5×10
-10

, and Drift per 1.5 s is 1.5×10
-12

.  The result is shown in Fig. 4 with a 

red line.  Using these noise data, computer simulation is conducted. 

 

In normal operation, modified PI control is used for the crystal oscillator.  The following formula 

describing PI control is used. 

 
1

0

2
1

1

k

i

pi

i

k

lki

ik dttkt
l

k
offsetv ,      (3) 

 

where vk is the k-th applied voltage, offset = 5.4 (V), k1 is a proportional gain set at 7.0  10
5
, k2 is an 

integral gain set at 3.0  10
3
, l is the number of past data used for proportional control set at 1, k is data 

number from the beginning, p is the integral interval, which means an overlapping integral number, set at 

2, and t is the time difference measured by TCU.  During PI control, applied voltage data output by the 

PI controller are accumulated and a database named Voltage DB is constructed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4.  Allan deviations of actual crystal oscillator, modelled crystal oscillator, and 

modelled TCU output. 

 

 

SIMULATION RESULTS 

 
In the computer simulation, 50-minute PI control is first conducted, and this is followed by 35-minute CI 

control.  As a result, one simulation is completed in 85 minutes.  The initial synchronization error is 1 

s.  In the case of CI, the applied voltages are determined as shown in Fig. 2 using Voltage DB.  The 
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simulation is conducted twelve times for each case.  Figure 5 shows the simulation results obtained by 

averaging 50, 100, 200, 300, 500, and 1000 applied voltage data, and Fig. 6 shows the simulation results 

obtained by first-order extrapolation of 50, 100, 200, 300, 500, and 1000 applied voltage data.  In the 

figures, CI control begins from the elapsed time of 3000 s.  Pink lines show the simulation results of the 

maximum synchronization errors and blue lines show those of the minimum synchronization errors. 

 

In the case of averaging of the applied voltage data, no explicit difference is observed among the results. 

 

In the case of first-order extrapolation of the applied voltage data, the larger the number of applied voltage 

data is, the smaller the synchronization errors are.  

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5.  Simulation results obtained by averaging 50, 100, 200, 300, 500, and 1000 

applied voltage data. 

 

 

As the behavior of the crystal oscillator is statistical, the discussion of the maximum or minimum 

synchronization error is insufficient.  Therefore, statistical evaluation is conducted.  Standard deviations 

of the maximum synchronization errors are evaluated and the results are shown in Fig. 7.  The worst 

result is the case of the first-order extrapolation of 50 applied voltage data, where the standard deviation is 

54.7 ns, and the best result is the case of averaging 100 or 200 applied voltage data, where the standard 

deviation is 3.29 ns.  The best result in the first-order extrapolation cases is the case that uses 1000 

applied voltage data, where the standard deviation is 5.37 ns.  However, this result is worse than the case 

of averaging 1000 applied voltage data, where the standard deviation is 4.43 ns. 
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Fig. 6.  Simulation results obtained by first-order extrapolation of 50, 100, 200, 300, 500, 

and 1000 applied voltage data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7.  Standard deviations of maximum synchronization errors (simulation). 
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IV.  GROUND EXPERIMENTS OF RESSOX BEHAVIOR DURING CI 

 
EXPERIMENTAL METHOD 
 

Experiments using the ground confirmation test apparatuses are also conducted.  Two kinds of 

experiments are executed: (1) basic experiments and (2) actual operation experiments.  The details of the 

experimental conditions will be explained later.  Figure 8 shows the block diagram of the experimental 

apparatuses.  Each apparatus has been introduced in detail in reference [9] and only a brief introduction is 

provided here.  A RESSOX control signal transmitter (RCST) that advances the time information to 

compensate the transmission delay, a QZSS/GPS receiver (QZSSREC) that measures the pseudoranges of 

the navigation signals, a RESSOX controller (RC) comprising a PC using Windows XP, and a frequency 

transformer (FT) that supplies 10.23 MHz and 1.5 s pulses are provided as ground station equipment.  As 

a reference clock, a hydrogen maser (H-Maser) is used.  An uplink delay simulator (UDS2), an 

engineering model of the onboard crystal oscillator (MINI-OCXO), a simulator of the onboard time 

comparison unit (TCUSIM), a simulator of the navigation onboard computer (NOCSIM), a D/A converter, 

a QZSS simulator (QSIM2) that provides navigation signals with transmission delay using SimQZ 

software, and a pulse generator (PG) that supplies 1 s and 1.5 s pulses are also provided to confirm the 

operation of the ground station apparatuses.  A time-interval counter (TIC) measures the time difference 

between H-Maser and MINI-OCXO. 

 

BASIC EXPERIMENTS 
 

In the basic experiments, the pseudorange or the assumed distance between the QZSS and the ground 

station is constant at 250 km.  The reason why the distance is 250 km is as follows.  Because L1C/A 

navigation messages of constant distance cannot be prepared, navigation messages are not used for 

ambiguity resolution.  As the ambiguity of L1C/A is 300 km, the distance should be less than 300 km and 

therefore, 250 km is selected.  The measured error of pseudorange is assumed to be +5 m, so that the 

feedback command is 5 m.  In the experiments, 55-minute PI control is first conducted, and this is 

followed by 35-minute CI control.  As a result, one simulation is completed in 90 minutes.  The 

numbers of times of each experiment are shown in Table 1. 

 

The results of basic experiments correspond to the simulation results.  Figures 9 and 10 show respectively 

the results of the averaging and the first-order extrapolation of 50, 100, 200, 300, 500, and 1000 applied 

voltage data.  Most of the results are similar to the simulation results. 
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Fig. 8.  Block diagram of experimental apparatuses. 

 

 

 

Table 1.  Numbers of times of each experiment. 
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Fig. 9.  Basic experimental results obtained by averaging 50, 100, 200, 300, 500, and 

1000 applied voltage data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 10.  Basic experimental results obtained by first-order extrapolation of 50, 100, 200, 

300, 500, and 1000 applied voltage data. 
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Figure 11 shows the standard deviations of the experiments.  The worst result is the case of the first-order 

extrapolation of 50 applied voltage data, where the standard deviation is 78.5 ns, and the best result is the 

case of averaging 100 applied voltage data, where the standard deviation is 2.80 ns.  The best result of the 

first-order extrapolation cases is the case that uses 1000 applied voltage data, where the standard deviation 

is 5.81 ns.  These results are also similar to the simulation results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 11.  Standard deviations of maximum synchronization errors (basic experiments). 
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during CI is 6 ns. 

 

 

Table 2.  Experimental conditions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12.  Result of actual operation experiment (synchronization error). 
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Fig. 13.  Result of actual operation experiment (applied voltage and signal power). 

 

 

V.  DISCUSSION 
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(4) In the basic experiments, the best result is given by the case of averaging 100 applied voltage data, 

where the standard deviation is 2.80 ns. 

 

(5) In the actual operation experiment, the maximum synchronization error during CI is 6 ns.   
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