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Abstract 

Quartzlock is engaged in research to improve the generation, measurement, and distribution of 
accurate frequency sources that are stable with environmental changes. The elements in this progress 
report are both active and passive masers, quartz frequency standards, measurement systems, 
GPSlGlonass receiver, GPS CVTT, and rubidium standards. Space-qualijied passive hydrogen 
masers and rubidium oscillators are considered. A new measurement system is detailed and the$rst 
noise floor results are reported. 

ACTIVE AND PASSIVE MASERS, GPS-GLONASS, AND GPS 
CVTT 

NIST-traceable measurements have been made of a passive hydrogen maser with GPS, rubidium, 
and other elements for a new primary reference clock being developed with European Union 
assistance. 

IEM Kvarz provided an ensemble of active hydrogen masers to measure the GPS carrier-phase 
tracking RX performance of 5 ~ 1 0 - l ~  over 3 to 33 days. This figure was confirmed at PTB. The 
active maser performance has been significantly improved at 1 day to 3z10-16 for drift after 1 
year of operation ( 5 ~ 1 0 - ' ~  in the first month). 

The H masers used as a reference are CH1-75's. Results include the CH1-75 active hydrogen 
maser frequency stability measurement, which has an automatic cavity frequency control (ACFC) 
system. Two ACFC systems were investigated. The first system was non-autonomous, because 
another hydrogen maser was required for its operation; the second system was autonomous. 
The atom line quality modulation method was used in both systems. 

The ACFC system is based on measurement of the frequency difference of masers at two 
atom-line quality values by means of a frequency comparator and a reversible counter and 
cavity frequency control versus the value and sign of this difference. In the non-autonomous 
system, a cavity autotuning was produced by cycles with a 2300-s duration (a count time of 
the reversible counter in one direction was 1000 s); atom-line quality was changed by beam 
intensity. 
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10 s was used. The modulation was performed by introduction of an inhomogeneous magnetic 
field into the storage bulb. The tuning was performed by cycles with 25-s duration (the count 
time of reversible counter was 10 s). An additional digital filter (the second reversible counter) 
was introduced after the first reversible counter. 

The experimental frequency stability of the hydrogen maser with autonomous ACFC was 5~10-l~ 
per day. Using a more stable crystal oscillator having a frequency stability of 1.5~10-'~ at 1 s to 
10 s will improve maser frequency stability approximately by 3 times and using a microprocessor 
or a personal computer as a digital filter improves dynamic performance of the ACFC loop. 

The Autonomous Autotune (AAT) system employed enables close to Cavity Autotune (CAT) 
performance with two active hydrogen masers, which achieve Allan variances of 2~lO-'~ at 1 s, 
3~10-l~ at 10 s, and 2d0-l~ at 1 d, but without the advantage of a redundant system needed 
for HiRel timing. IEM KVARZ is providing active H masers for qualification and specification 
analysis of a new passive maser, a GPS/Glonass RX measurement system, and GPS, CVTT, 
and rubidium elements. The passive H maser target performance meets the European Space 
Agency PM specification requirement. 

GPS size, weight, and power reductions are significant. A new low-cost GPS element result is 
illustrated. It is not expected to be reproducible in production quantities as a product spec, 
but is a typical test result. 

MEASUREMENT SYSTEM 

The current measurement system A7 has the highest resolution available in the shortest 
measurement time: 1.5~10-~~ in only 100 s and 1.5~10-'~ in 1000 s. For the new passive maser 
this is the development tool used. However, in a system where the new PHM is the standard 
against which the DUT is measured, a low cost, smaller size, lighter weight module is required 
for it to be a component part in a complete system. The performance required is not as 
high as the current A7, but innovative solutions enabling substantial cost size and weight were 
required. A completely new approach was adopted that met the need of the Alpha project in 
all respects - the results achieved are plotted. 

RUBIDIUM OSCILLATOR 

The rubidium oscillator element has to be the most rugged because this link in the redundancy 
chain must survive longest, and telecom component applications in both civil and defense use 
have differing environmental requirements. 

Current HSRO, LPRO, SRAFS, and LCRO specs are tabled below. 

LABORATORY ENVIRONMENTAL DATA 

MechanicaVphysical environmental testing revealed the following results during tests of the 
rubidium element. 
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Fig.1 NIST traceability of A8-B 

Fig.2 NIST traceability of Passive Hydrogen Maser 
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Fig.3: 
Resonance Search - Axis 1. 
Monitor Accelerometer on Rubidium Module. 

re -Endurance Testing 

Fig.4 Applied Shock Pulse - 25gn for 6ns 
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Fig.5 

Fig.6 

Report of Calibration 
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Fig. 1 1 NIST- traceable passive maser offset 
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