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Abstract—In this paper, we pay our attention to the 
multiscale kalman algorithm based on correlation 
structure of the discrete wavelet coefficients for the 
restoration of the GPS common-view observation data. 
Based on the hypotheses of that the GPS common-view 
observation data being pretreatment possess of 1/f fractal 
characteristics. In this condition, we estimate the Hurst 
parameter of GPS clock difference data based upon the 
wavelet transform. When 0<H<1, the GPS clock difference 
data is taken for as a Gaussian Zero-mean nonstationary 
stochastic process which can be considered having the 1/f 
fractal characteristics. So, we can talk about the 
correlation structure of the discrete wavelet coefficients. 
During the course of the estimation of the GPS 
common-view data with the multiscale kalman bank, we 
process the single-channel and multi-channel 
common-view observation data, respectively. Comparisons 
between which results and circular T demonstrate our 
algorithm’s feasibility and effectiveness. 

 
I. INTRUDUCTION 

It must be remarked that the conclusions obtained in the 
paper is based upon the following hypotheses: 

(1) The GPS common-view observation data after 
pretreatment possess of 1/f fractal characteristics. A model for 
this process called fractional Brownian motion (fbm), has been 
proposed by Manderbrot and vanness. And then, the parameters 
estimation of 1/f fractal signal is turned into the estimation of 
Hurst parameters of fbm. 

 (2)  To consider the GPS common-view clock difference 

data processes is demonstrated by ( )tyH ，t IR∈ ,while, the 

increment ( ) ( ) ( )tytytG HH −+= 1  is discrete fractal 

Gaussian noise. This discrete Gaussian noise is a Zero-mean 
stationary Gaussian random stochastic process. We analyze this 
discrete fractal Gaussian noise by wavelet transform and based 

upon the variance equation of the least square algorithm, which 
is used to educe the method of estimating the Hurst parameter, 
this Hurst parameter is one of the parameter of GPS 
common-view clock differences data. 0<H<1 is demonstrated 
that these discrete data is a Gaussian Zero-mean nonstationary 
stochastic process which can be considered having the 1/f fractal 
characteristics. 

In this paper, According to [1], the wavelet transform and 
the least square algorithm are used to estimate our Hurst 
parameter of the GPS data. In paper [2], [3], [4], the correlation 
structure of the wavelet coefficients sequence are talked about. 
Based on these characteristics, the multiscale kalman filter bank 
is designed. In section II, we expatiate the wavelet transform 
algorithm of how to estimate Hurst parameter. In section III, on 
the base of Hurst exponent, the correlation structure of the 
wavelet coefficients sequence are discoursed in every scale. 
Furthermore, in section IV, the multiscale kalman filter based on 
the better mean-square estimation is obtained. Finally, in section 
V, the single-channel and multi-channel GPS common-view 
observation data are processed by the filters, respectively. We 
give out the experiment results.   

    
II.  THE ESTIMATION OF EXPONENT H OF GPS  
CLOCK DIFFERENCE DATA 

 In the paper, we suppose the GPS common-view data 
after pretreatment possess of the 1/f fractal signal character, 
based on this hypothesis, we can figure out its exponent H. if 
0<H<1, the condition of our algorithm is satisfied（that is, the 
GPS common-view data after pretreatment possess of the 1/f 
fractal signal character ）, then the algorithm talked about, in the 
paper, can be used to estimate our clock difference data. 
According to [1], we use the Mallat algorithm to analyze 
discrete fractal Gaussian noise of the discrete clock difference 
data. Wavelet transform and the least square algorithm are used 
to estimate the exponent H. According to Mallat , In [5] 
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While kg and kh  are the filter coefficients of wavelet 

function )(tφ  and scale function )(tϕ , respectively. And 

k
k

k hg −−= 1)1( . Haar wavelet is the most simply 

orthonormal basis. For Haar wavelet, there is 

21010 =−=== gghh , with this,  (1) turned into  
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According to the theorem of [6], we obtain the 

“approximate” wavelet coefficients [ ]kam  and “detail” 

wavelet coefficients [ ]kxm  by transforming discrete fractal 

Gaussian noise on the bases of orthonormal Haar discrete 

wavelet basis according to Mallat algorithm. Let [ ]jRm 、 mV  

are the autocorrelation of the wavelet coefficients and the 
variance of the  “detail” wavelet term ,respectively. Then  
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Here, we think the wavelet transformation is a whitening 
filter for fractal discrete Gaussian noise, which have maximally 
reduced the correlation of original signal. So, the correlation of 
wavelet coefficients obtained by wavelet transform can be 
ignored. Because the mean value of fractal discrete Gaussian 
noise is zero and the mean value of the wavelet coefficients after 

wavelet transform is also zero, the variance Var (x km ) of “detail” 

wavelet term resulted from transforming fractal discrete Gaussian 
on the bases of Haar basis according to Mallat algorithm can be 
estimated by the following equation: 
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While N（m）is the number of detail wavelet coefficients in 
the mth scale. According to (4), we can obtain: 
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while r=2H-1, the unknown parameters wait for us to 

estimate is （
2
Hδ ，r）.  

We get the new nonlinear equation by operating logarithm 
on both sides of (6) equation. 
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We can get  
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We can obtain by experiment that, with the increase of 
the wavelet decompose scale, the estimation precision will be 
relevant increased. But the increase of the wavelet 
decompose scale cannot obviously improve the estimation 
precision. Meanwhile, not the more decompose scale imply 
the more precision of the estimation results; but with the 
increase of the number of the experiment points, the 
precision of the estimation results will be corresponding 
improved.    

    
   III.  CORRELATION  ANALYSIS 
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We have detail deduced the estimation process of Hurst 
parameters. Next, we will analyze the correlation of wavelet 
coefficients about what data we are interested. In [3], We know 
that the 1/f –type fractal processes are the slow decay of the 
correlation structure associated with long -term dependencies. 
For Haar wavelet, it possesses of better correlation within scale 
than other wavelets, the dependency information between scales 
and within scale will be better used to improve the performance 
of signal process. In this paper, the Haar wavelet is used for 
further study. 

To consider our discrete clock difference data is 

demonstrated by ( )kyH , from [5], the wavelet series of the 

process ( )kyH up to the scale j is given by  
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     According to [3]、[7], the approximation term 

[ ]naJ  of the wavelet expansion can be avoided, ( )kyH  

can be approximately denoted by 
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We consider the Haar wavelet 
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ψ from which the orthonormal 

basis of the multiresolution analysis is obtained. According to 
[3], after some calculation, it is possible to obtain the 
autocorrelation function of the sequence of wavelet 
coefficients for n 0≠  
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(15) 
according to [3]and our validation, from (14)、(15), we 

conclude that with the Haar wavelet and H=1/2, the 
sequences of wavelets coefficients in each scale j are 

uncorrelated, but when H 2/1≠ ， ( ) 1,0 >≠ nnR j , 

which demonstrate the wavelet coefficients is correlated. 
The variance of the wavelet coefficients is given by  

( ) [ ]( ) ( )( ) 12
2

2
2

var0
+

==
Hj

jj HVndR ψ
δ

        (16) 

With ( ) ( )( )121
21 2

++
−=

−

HH
HV

H

ψ                 (17) 

In the next section, we will use Haar multiresolution 
analysis and the former equation to design our multiscale 
filters to estimate our clock difference data. 

 
IV. BANK OF KALMAN FILTERS BASED ON 

CORRELATION STRUCTURE OF WAVELET TERM 
SERIES 

To consider the real value of clock difference at the time 

of K is demonstrated by kχ , which constitute the state 

variable X k .  That is,   

 X k =( kχ ), 

The observation data is  

  ( ) ( ) ( ) ( )kwkXkHky +=   

Where, ( )kH  is observation matrix, X ( )k is the data 

of clock difference to be estimated. ( )kw  is the observation 

noise. 
Then the sequences of wavelet coefficients of the 

observation data is as follows :                   

[ ] [ ] [ ]nwndny jjj +=       j=1, 2,……, J 
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Where [ ]nd j  and w [ ]nj  are the sequences of 

wavelet coefficients of the clock difference data and 
observation noise, respectively. The sequences 

{ [ ] }Nnnwj ∈, are observation noises with variance 2
wδ . 

According to [8], the sequences [ ]nd j  are stationary 

processes for any scale. Hence, they can be approached on 
the basis of the AR modelin the time-scale domain as  

[ ] [ ] [ ]neindnd j

p

i
j

j
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      [ ] [ ]nen jj
j +−= 1χφ                 (18) 

Where { [ ] }Nnne j ∈......... is a zero-mean model 

noise, p denotes the order of the AR model and the 
p-dimensional vectors are defined as 

[ ] [ ] [ ]( )tjjj pndndn −−=− ,...11χ     

( )jpjjj φφφφ ,......., 21=                    (19) 

     According to Yule-Walker equation 
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The optimal coefficients of the kalman filters are given 

by 

[ ]
( ) [ ]

( ) ( ) ( )( )
[ ]

( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( )





































−−

−
−

=

=
−=

=

−

−
−

−
−

0....21
................

2....01
1....10

...2,1
0

1

1
1

2

1
1

jjj

jjj

jjj

nx

jjjj

t
jnxjje

nxjj

RpRpR

pRRR
pRRR

R
pRRRh

hRhR
Rh

j

j

j

δ
φ

 

                                       (21)  

Here , ( )nR j 、 ( )0jR  can be figure out by (14)~(17). 

Based on the definition of [ ]nX j , the state space 

model 
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can be derived from (18), where  
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G=(1,0,….,0) t         H=(1,0,……0)       (23) 

Then, we can get the wavelet coefficients series [ ]nd j , 

by use of kalman filters, we can get  
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The kalman algorithm can be referred by [8]. 
 

V. DATA PROCESSING 
We process the single-channel and multi-channel raw 

common-view data in our experiment, respectively. During the 
pretreatment of single-channel common-view data, the CRL- 
NTSC in 2001(MJD(51912-52001)) is used as experiment data. 
As in the process of pretreatment, during the time interval of 
unlocked secondary planet or the intermission of common-view, 
the second-degree interpolation polynomial is not used to insert 
absent data. During the pretreatment of multi-channel 
common-view data, the NTSC-NICT in 2005 
MJD(53367-53551) is used as experiment data, except 
satisfying strict common-view request, we delete the data of 
astral whose elevation less than 20 degree. In the following, we 
use two steps to demonstrate our data processing. 

    
 V.I The Estimate of Exponent H 

 As we know, the fractal brown motion is a zero-mean 
Gaussian nonstationary random process, but its increment is a 
zero-mean stationary random process, so we figure out the 
exponent H of the fractal signal by transforming its increment 
with wavelet. Here, we make the pretreatment common-view 
data as the raw fractal signals, because their mean value is not 
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equal to zero, we make zero-mean process. (which cannot affect 
H parameter.) After some data process, we can further obtain its 

increment. That is ( ) ( ) ( )tytytG HH −+= 1 . Then, we 

process them with wavelet transform according to Mallat 
algorithm. For the single-channel data and the multi-channel 
data, we all use five scales of Haar wavelet. Meanwhile, we 
figure out the H parameter use the method of what we have 
denoted. Figure 1(A) show the increment of the single-channel 
data of CRL-NTSC ( MJD(51912-52001)) in 2001. Whose H 
parameter is 0.6473. Figure 1(B) show the increment of the 
multi-channel data of NTSC-NICT（MJD(53367-53551)）in 
2005, whose H parameter is 0.6726. 

 
V.II The Estimation of Clock Difference Data 

We process two kinds of channel GPS common-view 

observation data, respectively. For the white noise 2δ  inserted 

in (14) and (16), we let it 1, just as the variance 2
wδ of the 

observation noise in observation equation, we also let it 1. The 
other coefficients can be obtained by the optimal coefficients 
determined by (21). According to [3], the original value of 

[ ]nd j  is given by [ ] )(*
0 nyna = . That is to say, y(1)、 y(2)、

y(3)、y(4) are make as the original value of [ ]nd j . But in our 

processing, because of considering correlation structure in our 

algorithm, the choice of original value of [ ]nd j  does not very 

important for the eventual results.  
In this paper, P=4. For single-channel data, the filter bank 

is corresponding to 3 scales of Haar wavelet. For multi-channel, 
6 scales of Haar wavelet are used. Finally, the results which only 
after an interval of five days, and at the time point of 389.5 
second, the data can be reserved, are compared with circular T. 
The final results comparisons between CRL-NTSC 
（ MJD(51912-52001) ） and circular T, whose 
Root-Mean-Square is 5.20ns; the results comparisons between 
NTSC-NICT （ MJD(53367-53459) ） and circular T, whose  
Root-Mean-Square is 4.89ns. The series figures show the data 
before and after the filter banks. 

 
VI CONCLUSION 

It must be remarked that the conclusions obtained in the 
paper are based on a hypotheses. We work out the exponent H of 
our common-view data based on this hypotheses. For 0<H<1, 
we can continue to talk about the correlation structure of 
wavelet coefficients about our data. Then we can estimate the 
data what we need. This algorithm gives us a new method for 
estimate the time series data. 

 The other virtue of this algorithm lies in, except we let 

2δ =1and 2
wδ =1, other coefficients can be obtained by theory 

equation, not by experience or transcendent method, which can 
reduce the man-made error by people themselves. Meanwhile, 
which give us a good approach to get optimal coefficients value. 
All of these help us to get better precision in the final results. 
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  Figure 1(A) CRL-NTSC (MJD(51912-52001))  

the increment of single-channel clock difference data   

 
 Figure 1(B) NTSC-NICT（MJD(53367-53551)） 

the increment of multi-channel clock difference data   
 

 
Figure 2(A) CRL-NTSC (MJD(51912-52001)) 

 raw single-channel common-view data 

Figure 2(B)  CRL-NTSC (MJD(51912-52001))  
After the multikalman filters considering correlation structure  

 

Figure 3(A) NTSC-NICT  MJD(53367-53551) 
Raw multi-channel common-view data 

 

Figure 3(B) NTSC-NICT  MJD(53367-53551) 
After the multikalman filters considering correlation structure 
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