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Abstract 
 

It is well known that a common notion of time in distributed systems can be used to ensure 
additional properties such as real-time behavior or the identification of the order of events.  As 
large-scale hardware testbeds for such systems are neither efficient nor easy to manage, discrete 
event simulations (DES) can be used to model such networks.  However, to ensure an exact 
behavior of such simulations, high precise models of the local clocks are also needed: the 
driving oscillators have to be modeled in a way that a DES simulation of a free-running node 
clock shows the same Allan deviation as the simulated counterpart.  This paper shows an 
approach to find a corresponding model for a simulator using white noise and a filter with the 
same power density spectrum as real-world oscillators.  

 
 
INTRODUCTION 
 
The advantage of synchronized clocks for network nodes is very well known.  One of the most popular 
applications is time division multiple access (TDMA) on shared media and the direct use for real-time 
tasks.  Besides that, the simple need for the capability of sequential ordering of events occurring in large 
distributed systems [1] depends on synchronized clocks.  Standards like the upcoming IEEE 1588 
protocol allow the synchronization of clocks over packet-oriented networks.  
 
In such commercial or industrial environments, the number of nodes often reaches a number of hundred 
or more.  Consequently, for design and development of control loops, devices or even enhancements of 
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protocols, the implementation of prototype testbeds is neither cost efficient nor trivial to manage.  Thus, 
there is a need for simulation of the operation and performance of such large systems. 
  
Besides the cost-efficient implementation of a simulation for large-scale networks, it is possible 
to run simulations faster or slower than in real time1, which opens new possibilities to verify 
effects that are too difficult to see in hardware-based testbeds.  Finally, simulation of timely 
behavior of geographically distributed elements has the advantage of having a common notion of 
real time available at each and every node.  Such fully synchronized clocks at every node can, of 
course, not replace the actual notion of time at a node (which is, of course, influenced by the 
local clock and, therefore, in general different at each and every node).  
 
The remainder of this paper is structured as follows: after an introduction into the problems of 
discrete event simulation, the theory of power density spectra of oscillators will be given.  This 
will be followed by an example of parameter extraction of a commercial off-the-shelf oscillator 
and a conclusion, as well as an outlook for further work. 
 
DISCRETE  EVENT  SIMULATORS 
  
In general, two possibilities for the simulation of time-driven systems exist: 
 

• Continuous time simulators, where a timescale is cut into arbitrary small parts and the status of 
the system is fully determined at each and every microtick of the simulator. However, for the case 
of high-precision clock synchronization, this turns out to be neither efficient nor manageable with 
today’s reasonably available computing power.  

• Discrete event Simulation (DES).  This class of simulators is built on events, which can be raised 
at a certain, so-called simulation time.  This simulation time is a global equally spaced timescale, 
such as TAI.  The main advantage comes from the fact that the simulator keeps track on all 
upcoming events and their occurrence, which allows the system to “jump” from one event to the 
next.  The time in between is not simulated and, therefore, skipped out, which increases the 
performance dramatically.  

 
When using DES for simulating networks performing clock synchronization, each simulated node has to 
use its own notion of time and not the globally available (and, therefore, evidentally synchronized) 
simulation time.  The task of translating this simulation-wide identical time notion into a node-specific 
one is done by oscillator models, which are the actual topic of this investigation.  
 
The obviously most simplistic approach is to model an oscillator with a drifting frequency offset. 
Although this model has shown to be very useful, such a jitter-less approach turns out not to be enough 
precise for simulation scenarios where clock synchronization in the sub-nanosecond range is needed.  Due 
to the fact that external events might also trigger a simulated node to wake up and take action, it cannot be 
assumed that there is no earlier run (externally inserted new event) than the locally calculated next event 
for a node. 
 
PROBLEM  STATEMENT 
 
This non-continuous progress in time requires special handling in the implementation of an oscillator 
                                                 
1 In this paper, the notation real-time shall address the behavior of a system to react within guaranteed 
(timely) deadlines, whereas real time will be used to indicate a physical timescale such as TAI. 
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model.  This means that any oscillator has to store the upcoming future of his scheduled tick events, in 
order to produce timely consistent output in case of an event insertion (in the order before already 
scheduled events).  
 
The problem with the simple drifting frequency model is, besides the poor mapping of physical effects 
like aging, that noise and statistical effects are not covered.  Consequently, an oscillator model, which 
gives a more realistic view of the reality, is needed. 
 
While the determination of the next event is easy when using a non-statistical behavior, an appropriate 
noise generator is required as base for calculating statistical properties.  Common simulators provide 
random number generators for white noise.  The goal for the design of the presented model is to develop a 
filter structure, which filters white noise in a way that the Allan deviation of real and modeled oscillators 
match.  In order to obtain the necessary parameters for the construction of a matching model, the power 
density spectrum and the setup for measuring a quartz crystal oscillator is used.  After extracting the 
required parameters (bandwidth, border frequencies, and the corner frequencies) from the measurement, 
the mathematical construction of the filter completes the development process. 
 
 
OSCILLATOR  MODEL 
  
The Allan variance [2] σy

2 of a power density spectrum Sy(f) limited to [flc,, fuc] is defined by: 
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It is well known [3] that a model of the power density spectrum of an oscillator is given by: 
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with Sy(f)=ΣSy,i(f) with -2 ≤ i ≤ 2.  Using this equation, the contributing parts of the Allan variance σy,i
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can be defined as: 
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with the trivial relationship: 
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A filter with a pulse response that satisfies this equation will respond to white noise with an output having 
the same Allan deviation as the measured system.  However, the evaluation of the above equations for flc 
→ 0 and fuc → ∞ deliver meaningful results only for values of i = {-2,-1,0}, whereas the parts for 1 and 2 
reveal infinite results for the integral.  
 
This fact is well known, as Jacques Rutman wrote in Characterization of Frequency Stability in Precision 
Frequency Sources [4]: “It is necessary to specify the value and shape of the low-pass filter for noise 
types with i > 0.  Most common shapes are the infinitely sharp low-pass filter …” 
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Nevertheless, for values of fuc < ∞, a solution of the integrals can be given with the help of the definition 
of the sine integral: 
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[5], as well as the Euler-Mascheroni Constant γ ≈ 0.577 [6], one can find new solutions of the 
contributory parts of the Allan deviation after a short calculation. 
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with the substitution uc(τ) = π fc τ .  Finally, the actual values can be calculated with 
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With these equations, it can be seen that the parts for i = -2,-1, and 0 are independent of fc, in the case of 
ug >> 1.  Moreover, for i=1 and 2, the respective parts of the Allan deviation approach infinity with 
growing numbers of fc.   
 
PARAMETER  EXTRACTION  FROM  MEASURED  ALLAN  DEVIATIONS 
 
The parameter extraction now can be done very easily with the following approach: 
 

1.) The values of σ2
y,1 and σ2

y,2 are limited by the test setup.  With that limitation, the lower and the 
upper cut-off frequency, which are defined by the measurement equipment, can be defined.  
Moreover, the relationship 2 π fuc τ >> 1 should be satisfied all relevant values of τ. 

2.) The graphical curve of σ2
y is measured empirically. 

3.) The theoretical values of the variances (in multiples of hi) have to be determined via equation (7). 
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4.) The values of hi get determined numerically with the method of the infinity norm || . ||∞.  
 
With that parameters the power density spectrum of Sy(f) is sufficiently determined, and can be used for a 
filter design.  
 
 
OSCILLATOR  CHARACTERIZATION 
 
As the study of the long-term stability of an oscillator is rather time consuming, it is desirable to make a 
measurement setup that will perform the entire measurement automatically.  For this reason, a 
measurement environment was set up as depicted in Figure 1.  A central part is the SR620 Universal 
Time-Interval Counter [7].  This device plays two roles: on the one hand, it is responsible for the 
measurement of the period of the oscillator under test, multiple periods respectively.  On the other hand, it 
is used as a remote control for the FPGA board.  This board is used as a frequency divider and provides 
the counter with a range of frequencies based on the temperature-stabilized oscillator under test.  In order 
to cancel out the influence of clock uncertainties originating from device internal oscillators, the SR620 
device was driven by a stable rubidium frequency standard.  The overall measurement is controlled by a 
PC, which also stores the measurement results. 
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Figure 1.  Measurement setup.  

 
 
MEASUREMENT  ACQUISITION 
 
To demonstrate the described modeling approach, the Allan variance of a 2 MHz oscillator was 
determined.  This was done by taking samples using different averaging times of the oscillator with the 
help of the measuring setup described in the previous section.  The range of τ was chosen to be set to 
logarithmic equally spaced values 1 μs to 500 s.  This upper value of τ is determined by measurement 
equipment.  Now the Allan variance can be calculated by [8]: 
.  
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where yn is the normalized frequency departure defined as: 
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where xn (the so-called time errors) are the measured samples and N is the number of samples.  After 
calculating the results, the Allan variance versus τ is displayed on a double logarithmic plot. 
 
The next step is to calculate the values of the hi parameters.  Although the structure of the model (2) 
suggests the straightforward approach of choosing five measured values and the solution of the resulting 
linear equation system, this turns out not to be the optimal approach.  The latter is caused by the fact that, 
in general, imperfections such as noise will not lead to an optimal fit.  That is why an approximation of 
the Allan variance and the parameters of (2) are needed.  This function needs to be in form of equation 
(4).  The approximation can be done in several ways, although not all of them have shown to be 
successful in the general case.  Using the methods of the least quadratic error does not prove to be very 
successful, as the logarithmic and, therefore, not equally spaced measurements and the relatively big 
range of measurement values do not lead to an optimal convergence.  However, instead of using the sum 
of the quadratic error, or || .||2., the infinity norm || . ||∞ of the error vector was used.  However, the success 
this method heavily depends on the starting values of this unconstrained, nonlinear approximation; a first 
rough guess of these values can be obtained using the least quadratic error method.  
 
Figure 2 shows the Allan variance as a function of τ displayed on a double logarithmic plot for two cases: 
the red-marked squares have been determined by measurement, and the blue curve represents the 
approximation using these points. 
  
 

 
Figure 2.  The Allan variance plot of the real oscillator and of the approximation. 
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Since the approximated function has the form of: 
 
  +++⋅= − -1182 7081650.227110277564720.285273282938080.18974971(10 ττσ y

  (11) ) 0734750.000000023480940.10828422 -3-2 ττ +
 
The hi parameters can be easily calculated with equation (7).  The calculated values of the hi parameters 
are illustrated in Table 1.  
 

Table 1.  The values of the hi parameters. 
 

i Value 
-2 1.2846933726509597 ⋅ 2010−

-1 2.0580462073483913 ⋅ 1910−

0 4.542215104500719  1910−⋅
1 5.2216853435436694 ⋅ 2010−

2 5.2216853435436694 ⋅ 2010−

 
 
CONCLUSION  AND  FURTHER  WORK 
 
For discrete event simulations of high-precision clock synchronization, a proper simulation model of 
oscillators is more than important.  In fact a model, also covering statistical behavior such as jitter, and 
not only an aging frequency offset, is mandatory.  This turns out to be not too easy, as it has to be possible 
to recall the simulator model several times, but no output value must be inconsistent with a previous 
answer of the simulation.  Such a model can be built via filtering a white-noise source with a filter that 
provides the same Allan deviation as a real-world oscillator.  This paper explains how to extract those 
parameters of actual measurements using the infinity norm || . ||∞ method.  This leads to the parameters of 
the spectral power density that can be used as a basis for the filter design.  This approach is demonstrated 
with some real-world measurements of an oscillator.  
 
As a next step, this model of the power density spectrum will be estimated by a pink-noise filter, and 
more and deeper investigations concerning measurement-model fitting will be done. 
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