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Abstract 

GPS signals can be used for positioning satellites in geostationary (GEO) orbits, but the 
performance in this case is poor, because very few pseudorange measurements are available at 
any given time.  This paper describes a new method for improving geostationary satellite 
navigation accuracy by using dynamic Two-Way Time Transfer (TWTT) measurements.  By 
directly measuring the clock error between the GPS satellite and the GPS receiver, TWTT 
allows meaningful information to be gathered when less than four GPS satellites are available.  
A simulation was developed in which satellites in GEO orbits with GPS receivers onboard 
generated a position with 1) GPS with a crystal clock, 2) GPS with an onboard atomic clock, 3) 
GPS with TWTT to a ground-based atomic clock, and 4) GPS with TWTT to a ground-based 
clock synchronized to GPS time.  Bringing an atomic clock into the system (Cases 2 and 3) 
resulted in a 21-38% improvement in the 3-D RMS position accuracy over the standard GPS 
case (Case 1).  However, using TWTT with a clocked slaved to GPS time resulted in a 60%-70% 
improvement in 3-D RMS positioning accuracy.  This level of performance was obtained for 
TWTT measurement error standard deviations anywhere between 0.3 ns to 30 ns. 

 
 
 
INTRODUCTION 
Dynamic two-way time transfer (TWTT) has recently been demonstrated [1,2], opening up the possibility 
of using TWTT measurements to improve GPS-based navigation solutions on moving platforms.  
Previous research has shown a 40% improvement in DGPS positioning accuracy when using TWTT to 
synchronize clocks between a network of GPS receivers [3].   Similar results can be found in [4]. 
 
The main objective of this research was to examine the impact of adding dynamic TWTT measurements 
to GPS-based geostationary (GEO) satellite positioning.  Using GPS to position satellites in GEO orbits 
can be a challenging task.  Most of the L-band RF energy transmitted by the GPS satellites is aimed at the 
Earth, and only occasionally is a GEO satellite within the main beam of a GPS satellite, as shown in 
Figure 1.  As a result, very few pseudorange measurements are typically available for positioning a GEO 
satellite.  Figure 2 shows an example of the number of available GPS measurements for a GEO satellite 
over a 1-day period.  From this plot, it is clear that having four satellites (which is required to obtain a full 
position/clock error solution) is a relatively rare occurrence for a GEO satellite.  When fewer than four 
measurements are available, then the receiver clock error cannot be estimated, and receiver clock errors 
will affect the positioning solution. 
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Figure 1.  GPS/GEO satellite coverage geometry. 
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Figure 2.  Example of the number of available pseudorange measurements for a standard 
GPS receiver in orbit on a GEO satellite. 
  

 
The thought behind this research is that by using TWTT measurements to help constrain or measure the 
GPS receiver clock error, then the positioning solution should be improved for a GEO satellite.  TWTT 
measurements should eliminate the need for a precise clock on the satellite, because it would only need a 
precise reference clock on the ground.  Essentially, using TWTT with a highly accurate clock on the 
ground and a low-quality clock on the satellite would be comparable to putting a highly accurate clock on 
the satellite itself.  Even better performance should be possible by using the TWTT system to directly 
measure the absolute GPS receiver clock error on the GEO satellite by synchronizing the GPS receiver 
clock to a clock slaved to GPS system time. 
 
A simulation was developed in order to evaluate the effect of different ways to use TWTT measurements 
to improve positioning of GEO satellites.  This paper describes the simulation and summarizes the key 
results obtained by running the simulation. 
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BACKGROUND 
Two-Way Time Transfer (TWTT) is a technique in which signals are simultaneously exchanged between 
two users to measure their relative clock offsets.  If the paths between the two users are reciprocal, the 
delays cancel and the difference between the two clocks is half the difference in time-interval counter 
readings [5]. 
 
TWTT can be performed in both static and dynamic modes.  Static TWTT uses two or more transceivers 
whose positions on Earth are held constant during the transmission and reception of the measurement 
signals.  Dynamic TWTT is a more recent development that allows one or more of the transceivers to be 
moving [1,2]. 
 
DYNAMIC  TWTT 
 
Dynamic TWTT is accomplished in the same fashion as static TWTT, with the exception that one or more 
of the receivers is moving.  The moving receiver(s) introduce motion-related errors that are not present in 
the static case.  A dynamic TWTT configuration is illustrated in Figure 3. 
 
Not all of the cancellations that applied to the static TWTT case transfer to the dynamic case.  For the 
dynamic TWTT scenario in Figure 3, it can be assumed that dAS ≈ dSA, since the geostationary satellite 
has no relative motion with respect to the earth station and the path length does not change.  This 
replicates the situation in the static case.  Unlike the static case, dSB ≠ dBS for the dynamic case, since the 
mobile platform has moved during the transmission of signals, causing the transmit and receive path 
lengths to be different between the geostationary satellite and mobile platform.  Because the mobile 
platform is in motion, the Sagnac effect will also vary and produces a time-dependent value. 
  
 

 
 

Figure 3.  Dynamic TWTT using a satellite [2]. 
 
 
Taking all this into account, the time differenced measurement for dynamic TWTT becomes: 
 

    A – B = 
1
2

[R(A) – R(B) – ΔPropDelay + SAB – SBA] (1) 

where 
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R(A) = time-interval counter reading for Station A 
R(B) = time-interval counter reading for Station B 
SAB = Sagnac delay from Station A to Station B 
SBA = Sagnac delay from Station B to Station A 
A = time of Clock A 
B = time of Clock B 
ΔPropDelay = change in propagation delay over measurement interval. 

 
The ΔPropDelay term is a time-varying value that changes based on the relative motion of the mobile 
platform as well as how the velocity vector is projected onto the line of sight vector from the 
geostationary satellite.  The Sagnac delay term (SAB – SBA) is also time-varying, changing based on the 
absolute position of the two receivers and the velocity vector projected onto the equatorial plane [2]. 
 
 
METHODOLOGY 
 
This research is based on a simulation created using MATLAB® and contains five main functions, seen in 
Figure 4.  The load_params function involves collecting desired input parameters from the user.  The 
generate_truth function uses the input parameters to create truth data that will simulate the environment 
that is being measured.  The generate_meas function uses the truth data to generate pseudorange and 
TWTT measurements for a geostationary satellite.  The kalman function inputs the generated 
measurements into a Kalman filter and predicts the state of the satellite at each epoch in the simulation.  
The analyze_results function takes the results of the Kalman filter and compares them to the truth data to 
determine the accuracy of the filter.  Each of these functions will be briefly described in the sections that 
follow. 
 

 
 

Figure 4.  Simulation block diagram 
 
 
PARAMETERS 
 
The simulation begins by collecting all the desired input values for a host of variables that are used 
throughout the simulation.  The essential parameters are: 
 

• Initial ECI state for the geostationary satellite 
• Simulation run time and time step interval (set to 1 day of simulation with measurements at 1- 

minute intervals) 
• GPS satellite ephemeris date selection 
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• Clock type selection and clock model parameters 
• Two-Way Time Transfer measurement accuracy 
• Kalman filter parameters (noise values, etc.) 
• Monte Carlo parameters (e.g., number of runs). 

 
TRUTH  MODEL 
 
The truth model function is responsible for generating all data that will be considered as the absolute 
truth.  There are three main operations that happen in this function: 1) propagation of the geostationary 
satellite state forward over a specified time interval, 2) calculation of the true GPS satellite position and 
clock at measurement times, and 3) clock error modeling. 
 
GEO Satellite Propagation.  Implementation of a simple Kalman filter propagates the GEO satellite 
state vector into the future.  The initial state vector  is provided, along with an initial covariance 
matrix  and a dynamics matrix .  The covariance matrix describes the accuracy of the state 
vector values and the dynamics matrix explains the motion of the state vector. 

0
ˆ ( )tx

0( )tP 0( )tF

 
The GEO satellite state vector is comprised of three position and three velocity states, as shown in 
Equation (2).  Note that the simulation is implemented within an Earth-centered inertial (ECI) frame, and 
the final results are later converted to an Earth-centered Earth-fixed (ECEF) frame for ease of 
presentation and understanding. 
 

    [ ]TX Y Z X Y Z=x & & &
       (2) 

 
The continuous truth model for propagating the GEO orbit is  
 

  (3) ( ) ( ) ( ) ( )t t tx = F x + w& t
 
where the process noise w(t) is described by 
 

 [ ]( ) ( ) ( ) ( )E t t t t tδ′ ′= −w w Q
 (4) 

 
The dynamics matrix F(t) describes two-body the motion of the GEO satellite, and is written in 
continuous form as: 
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 (5) 
 
where μ is the Earth’s gravitational parameter and r is the current orbital radius of the satellite. 
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A real satellite orbit would include the effects of many perturbing forces, such as higher-order gravity 
terms, the effect of solar pressure, gravity effects from the moon and sun, etc.  Many of these effects are 
well understood and could be modeled in a real system.  These types of deterministic effects were not 
modeled within the simulation, because they would basically be added into the truth model and then 
removed in the filter model, having no significant impact.  However, it is understood that in the real 
world, the filter model will not perfectly match the truth model.  To accurately represent this effect within 
the simulation, a small amount of dynamics noise was added to the truth model through the matrix Q(t): 
 

  (6) 
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GPS Satellite True Position and Clock Calculation.  After propagating the GEO satellite state vector 
forward in time over the entire simulation time interval, the truth model function then calculates the 
positions and clock states of each individual GPS satellite over the entire simulation time interval.  The 
true GPS satellite position and clock errors were calculated using a precise ephemeris (.sp3) file.  Later, 
within the estimation Kalman filter, the position and clock error are calculated using the broadcast 
ephemeris data for the same time period.  This means that there is a realistic difference between the truth 
and the modeled satellite positions that is representative of a particular day in GPS history.   
 
Clock Modeling.  The simulation needed to model the receiver clock error in the GPS receiver in the 
GEO satellite, as well as in an atomic clock on the ground (used in one of the scenarios described in the 
results section).  For this simulation, the clock errors were modeled using a clock model given in [7]. 
 
The performance of atomic clocks was simulated using a three-state polynomial process driven by white 
noise.  The discrete process model was implemented as: 
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where 
 

1 ( )kx t and 1 1( )kx t
+

= clock bias error at times andkt 1kt +  

2 ( )kx t and 2 1( )kx t
+

= clock drift error at times andkt 1kt +  

3 ( )kx t and 3 1( )kx t
+

= clock drift rate error at times andkt 1kt +
 

1kt tτ
+

= − k = time interval 
 w1(k), w2(k), and w3(k) = white noises. 

 
The clocks cannot be modeled deterministically because of their stochastic nature.  Instead, the 
performance of the random walk noise values (w1, w2, w3) is modeled and the characteristic Allan 
variance curves of the atomic frequency standards are matched [6].  The statistics of the random walk 
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noise values are determined by the values of the variance continuous process noise power spectral 
densities (q1, q2, q3) of Qd in Equation (8). 
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 (8) 
 
The results given later use both atomic (rubidium) clocks and ovenized crystal clocks (representative of a 
good crystal clock that would be used in a typical spaceborne GPS receiver).  The q values for a 
spaceborne rubidium clock for this simulation were chosen by leveraging research conducted in the Clock 
Improvement Initiative [7] and are displayed in Table 1.  The ovenized crystal clock parameters are 
obtained from [6].  To calculate a clock’s three-state random process in the simulation, initial clock bias, 
drift, and drift rate values are selected from Table 1 and then propagated using Equation (7).  The Qd from 
Equation (8) was used to generate properly correlated w1, w2, and w3 terms using a U-D factorization 
technique. 
 

 
Table 1.  Process noise values for simulated clocks. 

 

 Rubidium Clock Ovenized 
Crystal Clock 

q1 (bias) 1.11 × 10-22 s2/s 1.6 × 10-21 s2/s 

q2 (drift) 2.22 × 10-32 s2/s3 3.2 × 10-21 s2/s3 

q3 (drift 
rate) 6.66 × 10-45 s2/s5 0 s2/s5 

 
 
GENERATED  MEASUREMENTS 
 
The measurement generation function is responsible for creating pseudorange measurements by using the 
information supplied by the truth generation function.  Pseudorange values are normalized range 
measurements with the addition of errors due to pseudorange measurement noise, GPS satellite clock 
bias, and receiver clock bias.  The pseudorange equation is: 
 

 
2 2 2( ) ( ) ( )sat sat sat sat

rec rec rec rec PRx x y y z z c t c tρ δ δ υ= − + − + − + − +  (9) 
where 

, ,sat sat satx y z = true ECEF position of the satellite (m) 
, ,rec rec recx y z = true ECEF position of the receiver (m) 

rectδ = receiver clock bias (s) 
sattδ = satellite clock bias (s) 

PRυ = pseudorange error (m) 
c = speed of light (m/s). 
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An important part of the GPS measurement model is determining exactly which GPS satellites are 
“visible” to the GEO GPS receiver at any point in time.  Visibility is determined by a combination of 
received signal strength and a model of GPS receiver sensitivity. 
 
RECEIVED  SIGNAL  STRENGTH 
 
To determine the strength of the GPS signal that is received by the GEO satellite, the satellite nadir look 
angles are needed.  If the GEO satellite and GPS satellite positions are known, simple vector math will 
produce the angles θ and α (referenced in Figure 5), which are the GPS satellite look angle and GEO 
satellite look angle, respectively.  The calculated look angles are then used with antenna gain pattern 
information to determine the received signal strength.  Additionally, any signal that passed within 400 km 
of the surface of the Earth was deemed unavailable due to atmospheric effects. 
 
 
 

 
 

Figure 5.  GPS measurement geometry. 
 

 
The total received signal power can be calculated according to [8]: 
 

 

2

24 4
T T R

s
P G GP

R
λ

π π
=

 (10) 
where 
 

Ps = received signal power (watts) 
PT = signal power at transmit antenna 
GT = transmit antenna gain 
GR = receive antenna gain 
R = distance between transmit and receive antennas 
λ = signal wavelength (GPS L1 wavelength ≈  5.255 m). 

 
The resulting value is the signal power at the exit of the receiver antenna.  A typical transmit (GPS 
satellite) antenna gain pattern was obtained from [9].  The GEO satellite receiver was modeled using the 
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gain pattern from a patch antenna that flew aboard the Falcon Gold experiment from the Air Force 
Academy [10].  This particular antenna is representative of hardware that has flown on previous satellites. 
 
Once the total receive signal power was determined, a C/N0 value was calculated by dividing by (or 
subtracting, if working in dB) a noise power density.  This simulation uses a standard N0 value of 202 
decibel-watts [8]. 
 
GPS Receiver Model.  Once the received signal strength has been calculated, the pseudorange 
measurement noise error can be established through the use of a GPS receiver model.  Fundamentally, the 
C/N0 value defines whether or not a pseudorange measurement is available, and if it is, what the 
measurement noise would be.   
 
Figure 6 shows the receiver models used in this simulation.  The best performing receiver (labeled “High 
+”) is derived from data obtained in [11], and it is essentially an optimal receiver which performs better 
than most real receivers.  Similar C/N0 data is located in [12].  For each simulated receiver model, the 
point at which the line ends at the left represents the minimum C/N0 value that will still yield a 
pseudorange measurement. 
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Figure 6.  Simulated receiver models. 

 
 
TWO-WAY  TIME  TRANSFER  MEASUREMENTS 
 
The Two-Way Time Transfer measurements in this simulation do not include Sagnac error or motion 
related errors, since they are largely deterministic and can be removed.  The simulation could add the 
errors and then remove them, but this would be a wasted step that would only increase computational cost 
and would have no added value.  For simplicity, this simulation assumes that the propagation delays will 
cancel as in the static TWTT case.  The resulting TWTT measurement equation is: 
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[ ]
[ ]

1
2

1
2

( ) ( )

2 2
TWTT

GEO REF TWTT

GEO REF TWTT

T TIC GEO TIC REF

c t c t

c t c t

υ

δ δ υ

δ δ υ

Δ = − +

= − +

= − +  (11) 
where 

GEOtδ  = GEO satellite clock error 

REFtδ  = reference clock error 

TWTTυ  = TWTT measurement error 
c = speed of light. 
 

TWTT measurements are given to the Kalman filter along with the pseudoranges for measurement 
incorporation.  The TWTT measurement noise standard deviation values used in this simulation are 10, 3, 
0.3, 0.03, and 0.003 meters.  (Units of meters rather than seconds are used because the system is 
ultimately designed to navigate.  Dividing these values by the speed of light would give the values in 
seconds.) 
 
KALMAN FILTER 
 
A Kalman filter was chosen over a least-squares batch filter, since it allows for the use of new 
measurement data as they become available and easily models stochastic processes, such as clock errors.  
The Kalman filter has several initial values that govern the estimation algorithm.  The filter must know 
the accuracy level of the incoming measurements and how much to trust in their positioning information, 
as well as the amount of process noise in the system. 
 
The first thing needed by the Kalman filter is an initial state, including position, velocity, and clock error.  
These initial values are generated by adding the Gaussian random errors shown in Table 2 to the truth 
data.  The state vector is defined as: 
 

  (12) 
ˆ GEO GEO ref refX Y Z X Y Z c t c t c t c tδ δ δ δ

Τ
⎡ ⎤= ⎣ ⎦x & & & & &

where 
 

, ,X Y Z  = GEO satellite position components 
, ,X Y Z& & &  = GEO satellite velocity components 

GEOtδ  and GEOtδ &  = GEO satellite clock bias and clock drift 

reftδ  and reftδ &  = TWTT reference clock bias and clock drift 

c = speed of light. 
 
 

Table 2.  Initial state error standard deviation values. 
 

Initial State Standard Deviation Value
Position 20 m 
Velocity 0.01 m/s 

Clock bias 14 m 
Clock drift 20 m/s 
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Dynamics Model.  The dynamics matrix F describes the motion of the satellite, and is generated using 
the same equations as the truth generation.  The Kalman filter F matrix includes the clock terms, making 
it a 10 × 10 matrix.  The initial covariance matrix P describes the accuracy of the state vector, and will be 
updated as the filter iterates.  The process noise covariance matrix Q describes the errors associated with 
propagating the state covariance matrix P through time.  The Q matrix includes the process noise value of 
the GEO satellite and the related clock q values.  The Q matrix is equal to the Q matrix used in the truth 
generation and the clock q values are taken from Table 1, depending upon the type of clocks that are used.  
(The only difference is that the clock and position/velocity estimation are all done simultaneously.)  The 
Q matrix used in the Kalman filter does not change throughout the simulation.  Standard Kalman filter 
propagation equations were applied within the simulation [6]. 
 
Measurement Model.  The measurement model used in the simulation is 
 

 [ ]( ) ( ), ( )i i it t t= +z h x v it  (13) 
where 

( )itz  = measurement vector at time ti 
( )itv  = zero-mean white Gaussian measurement noise of strength R = E[vT(ti) v(ti)] 

 
and, for GPS measurements 
 

 [ ] 2 2 2( ), ( ) ( ) ( )sat sat sat sat
i i rec rec rec rect t x x y y z z c t c tδ δ= − + − + − + −h x  (14) 

 
The measurement equation for the TWTT measurements was given in Equation (11). 
 
After the h vector equations are written, the measurement partial derivative matrix H is constructed.  The 
H matrix relates the linearized observations to the estimated states, and is expressed for n measurements 
as: 
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     (17) 
 
The H matrix is of size n by m, where n is the number of measurements and m is the number of states.  (In 
this simulation, m = 10).  For example, if there are two pseudorange measurements and one TWTT 
measurement at a given epoch, the H matrix and measurement vector z will be: 
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       (18) 
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where 
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In the example given above, the corresponding R matrix is: 
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                   (20) 
where 
 

PRσ  = standard deviation value of pseudorange measurement noise 

TWTTσ  = standard deviation value of TWTT measurement noise. 
 

Standard extended Kalman filter measurement incorporation equations were implemented within the 
kalman function of the simulation.  More details on the Kalman filter implementation can be found in 
[13]. 
 
 
RESULTS 
 
Analyzing the simulation results involves comparing the Kalman filter estimated state with the true state.  
The analysis depends on the simulation type, being either a single run or a Monte Carlo collection of runs.  
All internal calculations within the simulator were performed in the ECI frame.  However, prior to 
interpreting the results, the errors were all converted to ECEF coordinates, so that they would be easier to 
interpret.  This is mostly due to the fact that the GEO satellite is nearly stationary in ECEF coordinates. 
 
The most important result is the three-dimensional positioning error, which will be expressed as Mean 
Radial Spherical Error (MRSE).  The MRSE is analogous to a three-dimensional Distance Root Mean 
Square (DRMS) value.  For a Monte Carlo simulation, the MRSE for a particular epoch is calculated by 
using the following equation: 
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( )2 2 2

1

n

i i i
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x y z
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n
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+ +
=
∑

 (21) 
where 

 
n = number of simulation runs 

true filter

i i ix X X= −  = difference of truth and filter X position for epoch i 
true filter

i i iy Y Y= −  = difference of truth and filter Y position for epoch i 
true filter

i i iz Z Z= −  = difference of truth and filter Z position for epoch i. 
 
The MRSE value can also be calculated by using the standard deviation values that exist in the covariance 
matrix for a particular epoch, as seen below. 
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+
 (22) 

 
where 
 

, ,x y zσ σ σ  = standard deviation values for the X, Y, Z coordinates. 
 
Using a Monte Carlo simulation, each run will generate different position values, but the filter-computed 
covariance values will be the same for every single run.  As a result, the covariance standard deviation 
values from a single run can replace the position values from hundreds of runs in a Monte Carlo 
simulation, if the filter modeling is accurate. 
 
After the MRSE is calculated for each time epoch, the Root Mean Square (RMS) is calculated for the 
entire collection of epochs, using Equation (23).  The final result is a single RMS value that depicts the 
level of error in the estimated GEO satellite position. 
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       (23) 
where 

 
n = number of epochs 
MRSEi = MRSE for epoch i. 

 
COVARIANCE  ANALYSIS  VALIDATION 
As a first step in validating the simulation model, several Monte Carlo simulations were performed to 
analyze the statistical results and confirm the output was reasonable.  The Monte Carlo simulations 
consisted of 100 iterations.  Each simulation uses the same parameters, but uses a different set of random 
numbers produced by the random number generator in MATLAB®.  Figure 7 shows the estimation error 
in the Y direction for 100 Monte Carlo runs using a “standard” stand-alone GPS receiver (i.e., no TWTT 
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measurements).  The areas of error growth occur when there are very few GPS measurements available.  
For this simulation, the GEO was placed over 0° latitude and 0° longitude, so the Y direction represents 
the local vertical direction. 
 
The Monte Carlo ensemble mean and standard deviation are shown in Figure 8, along with the filter-
computed standard deviation for the same runs.  Note that the filter does a good job of capturing the 
ensemble results.  Other scenarios were run with similar correspondence between the filter-computed 
values and the Monte Carlo values.  Monte Carlo simulations that include TWTT measurements had 
similar performance as the non-TWTT case.  Based upon this performance, the filter-computed values 
were deemed to be sufficient to characterize the simulation output.  By doing so, results were able to be 
obtained by performing a single run of the filter for any given scenario. 
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Figure 7.  100 Monte Carlo runs, standard receiver, ovenized crystal oscillator, no TWTT 
measurements. 
 

 
SCENARIO   DESCRIPTIONS 

There were five basic scenarios that were simulated: 
 

1. Crystal GEO, no TWTT.  This scenario is considered the current performance baseline, as it 
represents the case where the solution is based entirely on a single GPS receiver in orbit on the 
GEO satellite with a good-quality ovenized crystal (non-atomic) clock, and no use of TWTT 
measurements. 

2. Rb GEO, no TWTT.  The only difference between this scenario and Scenario 1 is that the GPS 
receiver in orbit is now driven by a rubidium clock in the GEO satellite.  There is still no TWTT 
involved. 

3. Crystal GEO, Rb TWTT.  In this case, the GEO satellite has an ovenized crystal clock, but a 
TWTT system is used to measure the difference between the onboard clock and a rubidium clock 
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that is on the ground.  (TWTT 1-σ accuracy = 0.3m ≈ 1ns).  This TWTT measurement is then 
incorporated as described in Equations (18)-(20), which essentially has the effect of correcting the 
onboard clock to match the ground-based rubidium clock. 

4. Rb GEO, Rb TWTT.  In this scenario, there is both a rubidium clock onboard the GEO satellite, 
and a TWTT system is used to measure the difference between the onboard oscillator and a 
rubidium clock on the ground. 

5. Crystal GEO, GPS Time TWTT.  In this final scenario, the GEO satellite has an ovenized crystal 
clock, and a TWTT system is used to measure the difference between the onboard clock and clock 
on the ground that is slaved to GPS system time. 
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Figure 8.  Comparison between Monte Carlo ensemble statistics and filter-computed 
statistics, standard receiver, ovenized crystal oscillator, no TWTT measurements. 

 
 

SIMULATION  RESULTS 
 
Each of these scenarios was run for each of the six levels of receiver sensitivity described previously, 
using a TWTT measurement accuracy of 1ns (1σ).  Figure 9 shows the entire-run RMS values for each of 
these test cases (calculated as shown in Equation 23).  There are several things to note about the results 
shown on this plot. 
 
First of all, there is a modest performance improvement when an atomic clock is used rather than a crystal 
oscillator.  Interestingly, the performance was almost identical among Scenarios 2, 3, and 4—all scenarios 
that include an atomic clock.  This would imply that using a TWTT system to synchronize to an atomic 
clock on the ground would give equivalent navigation performance to placing an atomic clock in orbit.  
From a practical point of view, this would alleviate the need to place atomic clocks in orbit for many 
satellite navigation applications. 
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Secondly, and probably most importantly, there is a drastic performance improvement when the TWTT 
system is used to synchronize with a ground clock slaved to GPS system time (Case 5).  The overall 
improvement in positioning performance varies between 60%-70% across all receiver models.  In 
essence, this approach is able to measure the absolute error in the GEO GPS receiver clock.  As a result, 
each GPS pseudorange measurement actually becomes a true range measurement.  (The GPS pseudorange 
measurements are called pseudorange measurements rather than range measurements primarily because 
they include the effects of the receiver clock error.)  Note that these effects all happen implicitly within 
the estimation Kalman filter, as it estimates both the receiver clock error and the GEO satellite position 
simultaneously, using both GPS pseudorange measurements and TWTT measurements. 
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Figure 9.  3D RMS position error vs. GPS receiver sensitivity levels for five basic scenarios. 
 
 

Finally, it is important to point out that the relative performance improvements (i.e., percentage 
improvement over Case 1) are similar across all simulated receiver sensitivities.  This implies that using 
TWTT measurements to synchronize with a GPS-disciplined clock is of value in many different 
situations. 
 
 
It is insightful to evaluate the results on an axis-by-axis basis.  Figure 10 shows the RMS 1-σ errors for 
both Scenario 1 (no TWTT) and Scenario 5 (TWTT to GPS-synchronized ground clock) on an axis-by-
axis basis.  The solid lines represent Scenario 1, and the dashed lines represent Scenario 5.  It is clear 
from this plot that the most significant benefit of using the TWTT measurement is observed in the X 
(vertical) direction.  There is a noticeable improvement in the Y and Z directions, particularly for the less 
sensitive receivers, but in all cases it is the X direction where the largest improvement can be seen.  This 
is consistent with the generally understood principle from GPS that the receiver clock error has the 
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greatest impact in the vertical direction.  It makes sense that using a TWTT system to help estimate 
receiver clock error would reduce this effect. 
 
ADDITIONAL  TESTS 
 
Variation of Ephemeris Date.  To ensure the simulation does not depend upon the ephemeris data for a 
specific day, 9 additional days were selected for comparison.  One day was selected out of each year from 
1997 to 2006, providing a comprehensive evaluation pool.  Each simulation was identical, other than the 
different ephemeris date, and used the worst-case scenario of a standard sensitivity receiver with no 
TWTT measurements.  While the absolute 3-D RMS error magnitudes did show minor variations between 
different ephemeris sets (up to 17% difference), the overall trends observed in Figure 10 were nearly 
equivalent for all ephemeris sets.  It is apparent that differing ephemeris dates do not have a significant 
impact on the results of the simulation.   
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Figure 10.  Axis-by-axis evaluation of results for Scenarios 1 and 5. 
    
 
Required accuracy of GPS time synchronization for Scenario 5. In Scenario 5, the TWTT 
measurement is taken relative to a clock on the ground that is slaved to GPS system time.  Inherently, 
there will be errors in this measurement due to both TWTT measurement accuracy and errors in the GPS-
slaved clock on the ground (i.e., the difference between the reference clock and true GPS time).  Both of 
these types of errors will have the same effect on the results, so they are considered to be lumped together 
as a total TWTT measurement error for the Scenario 5 cases. 
 
In order to evaluate the sensitivity of the results to this total TWTT measurement error, the Scenario 5 
results were recalculated for a range of TWTT measurement error values between 0.3 ns and 100 ns, and 
the results are shown in Figure 11 (along with the baseline case with no TWTT measurements, for 
comparison purposes).  It is interesting to note that the simulated results are not highly dependent upon 
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TWTT measurement accuracy, and that significant degradations in performance are not seen until the 
worst case value of 100 ns. 
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Figure 11.  3-D RMS position error for varying TWTT measurement errors for Scenario 
5 (TWTT with reference clock synchronized with GPS Time). 
 
 

It should be noted that all errors in this simulation were modeled as white, Gaussian errors, and that if 
there were time-correlated errors, the solutions would be biased and not be as good as the simulation 
predicts.   (By its very nature, the covariance analysis assumes an unbiased solution).  Of course, the level 
of measurement error correlation depends upon the frequency at which measurements are incorporated. 
   

 
CONCLUSIONS 
 
This simulation demonstrated that TWTT measurements can be extremely useful in improving the 
positioning performance of high-altitude satellites.  The largest benefit comes from using TWTT 
measurements to synchronize between the GPS receiver clock at GEO and a clock on the ground slaved 
to GPS system time.  In this case, 3-D RMS positioning accuracy was improved between 60%-70%.  The 
level measurement error of the TWTT measurement was not critical to the results for this simulation as 
long as the error was below 30 ns.  Also, the greatest positioning improvement is observed in the vertical 
direction. 
 
A more modest, but still significant (21%-38%), performance improvement was obtained when TWTT 
was used to synchronize between the GPS receiver at GEO and an atomic clock on the ground.  It was 
shown that the performance in this case was equivalent to the performance of placing at atomic clock in 
orbit. 
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Use of TWTT measurements allows any standard GPS receiver to operate effectively on a GEO satellite 
with reasonable accuracy.  Accurate GPS navigation in high-altitude orbits provides numerous 
opportunities, such as automated station-keeping in a GEO orbit.  Also, by substituting automation and 
removing the ground-based ranging systems, the cost reduction incurred by reducing ground support is 
considerable. 
 
 
DISCLAIMER 
 
The views expressed in this paper are those of the authors and do not reflect the official policy or position 
of the United States Air Force, Department of Defense, or the U.S. Government. 
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