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Abstract 
 

This paper examines the characteristics of three types of random error measures in the 
presence of negative power law (neg-p) noise: (a) the observable residual error after removing 
an estimate of an information containing causal function from data, (b) the jitter, the residual 
error with additional highpass (HP) filtering, and (c) Mth-order difference (Δ) variances, such 
as the Allan variance (1st-order Δ-variance of the fractional frequency error y(t)) and the 
Hadamard-Picinbono variance (2nd-order Δ-variance of y(t)). Measures (b) and (c) are used to 
mitigate perceived divergence problems in the mean square (MS) of Measure (a) due to the 
presence of neg-p noise. This paper proves that this perception is wrong; it shows that the MS of 
Measure (a) converges in the presence of neg-p noise by demonstrating that extracting a 
statistically optimal estimate of the causal behavior from data HP filters the noise in the 
measure. It is further shown that the order of this noise HP filtering increases with the 
complexity of the model function used to estimate the causal behavior in the data. Thus, if one is 
free to choose the complexity of the model function, the MS observable residual error is 
guaranteed to converge for any negative power in the noise PSD. Because of this, it is shown 
that the jitter can be defined simply as the observable residual error without additional HP 
filtering, making the jitter and residual error the same error measure. This paper finally shows 
that an Mth-order Δ-variance is also a measure of the MS of the observable residual error for 
any number of data samples when the model function is an (M-1)th-order polynomial. This 
completes the equivalence, showing that Measures (a), (b), and (c) all measure the same kind of 
error when the model function for the causal behavior is a polynomial. The consequences of 
this equivalence are then explored. Among these is a physical explanation for the fact that the 
Allan variance is sensitive to frequency drift, while the Hadamard-Picinbono variance is not. 

 
 
INTRODUCTION 

Different approaches for specifying random time, phase, and frequency (TPF) error are used across the 
electrical engineering (EE) community.  As shown in Figure 1, these approaches are as follows. 
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Figure 1.  Residual error (left), jitter and wander (middle), and difference variances (right). 
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OBSERVABLE  RESIDUAL  ERROR 
 
We will define , the mean square (MS) observable residual error, as the MS of the difference 
between a set of N data samples v(tn) (over an observation time T) and  an 

)M,N(2
jv−σ

),t(v nM,w A estimate of a true 
causal function  imbedded in the data [1].  The parameter M in  relates to the M in 

 and will be explained later.  is an important random error statistic in system 
specification, because it relates directly to primary performance measures in many systems.  These 
measures include the signal-to-noise ratio (SNR), the bit or symbol error rate (BER), the noise power ratio 
(NPR), the effective number of bits (ENOB), and the multiplicative noise ratio (MNR) (signal processing 
noise) [2-8].  In many treatments, the terms standard, sample [9], and MS (RMS for deviate) error are 
used when  is intended, but we will use the neutral term residual error, because it does not 
have the alternate definitions or connotations associated with these other terms.  Note that we are explicit 
in stating that it is , the 

)t(vc

)M,N(j

t(v nM,w

)M,N(2
jv−σ

),t(v nM,w A )M,N(2
jv−σ

2
v−σ

),A estimate of the causal function, that is removed from the data, not 
, the true causal function.  The distinction between the estimated and true causal functions is often 

glossed over in treatments of residual error, but this distinction will be important later in our discussion.  
Thus, only the observable residual error, based on causal behavior estimated from the data set itself, is 
directly measurable or observable from a set of data, even if the desired error measure for system 
specification is the true residual error [1]. 

)t(vc

 
),t(v nM,w A

A

, the model function used to estimate , will be considered a function of M parameters 
represented by the column vector  (' is the matrix transpose) as well as the observation 
or sample time tn.  Thus, the M in  is the source of the M in .  In this paper, we will 
adjust  in  to obtain a statistically optimal estimate of  by utilizing a least-squares fit 
(LSQF) over the N samples of data  [1], where we will assume the  are evenly spaced over the 
observation interval T.  For Gaussian random (though divergent neg-p) noise, such an LSQF is equivalent 
to other maximum likelihood methods [1,10], especially if we allow the LSQF to be weighted [1]. 
Estimating the M parameters in  or the function  from the data is equivalent to the extraction 
of causal information from the data, hence the title of the paper.  This is true whether the information is a 
desired product of the system or is just another error parameter that impacts system performance, such as 
the frequency aging of an oscillator. 

)t(vc

)'1

(v M,w

a,...a,a( M10 −=A

),t(v M,w A

)t(v n

)M,N(2
jv−σ

)t(c

)t(v n

),t(v nM,w A v

A ),t A

  
JITTER  AND  WANDER 
 
Jitter and wander [4,11,12] have been introduced to deal with perceived divergence problems in the 
residual error associated with the presence of negative power law (neg-p) noise [13].  Time jitter and 
wander are currently defined as brick-wall highpass (HP) and lowpass (LP) filtered variations in the time 
error x(t) or the time interval error TIE with a crossover frequency fc excluding causal frequency offsets 
and drifts (and implicitly causal time offsets) [4,11,12].  Thus, jitter and wander are effectively HP and 
LP filtered x(t) residual errors after removal of the 2nd-order causal behavior in x(t).  The brick-wall HP 
filtering in the jitter ensures convergence for neg-p noise and dumps the convergence problem into the 
wander, which is usually ignored in discussions of jitter. 
 
For the purposes of the discussion that follows, we note that power law (neg-p) noise for a general 
variable v(t) is wide-sense stationary noise with a single sideband power spectral density (PSD) 

 [13]. Here, we are departing from [13] in utilizing the SSB PSD  rather than the double p
v f)t(L ∝ )t(Lv
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sideband or single-sided PSD , hence the use of  to avoid confusion with the DSB form . 
 Neg-p noise will designate such power law noise when 

)t(Sv )t(Lv

p
)t(Sv

0<  (usually 4,3,2,1 −−−−  [13]), and the 0p =  
case is generally called white v-noise.  We also note that v(t) will be generally considered a reference to 
TPF variables, such as x(t) the time error, φ(t) the phase error, or y(t) the fractional frequency error [4,13], 
but results in this paper in terms of v(t) will apply any variable without limitation. 
 
The problem associated with the use of jitter and wander is that the relationship of fc to natural filtering 
parameters in the system under consideration is often unclear.  The ITU arbitrarily defines fc as 10 Hz [4]. 
This is helpful in standardizing producers of TPF equipment, but bears only an accidental relationship to 
parameters in general user systems.  The IEEE Broadcast Technology Society (BTS) [11] and the Society 
of Motion Picture and Television Engineers (SMPTE) [12] relate fc to the loop bandwidth of a phase 
locked loop (PLL) in a user system.  This is helpful for users with PLLs in their systems, but leave users 
without appropriate PLLs in their systems in doubt.  We will address this fc relationship problem later in 
this paper. 
 
MTH-ORDER  DIFFERENCE  (Δ)  VARIANCES 
 

)(2
M,v τσ

)f(Lv

,the Mth-order difference (Δ) variances [14], is a generalization of the Allan or two-sample 
variance [13], which is the 1st-order Δ-variance of y(t) and the zero-dead-time Hadamard variance [15-18] 
or Picinbono variance [19], which is the 2nd-order Δ-variance of y(t).  These variances are considered 
stability measures and are used because of their excellent convergence properties in the presence of neg-p 
noise [13,14,16-19].   In fact, one can show, for any M, that the Mth-order Δ-variance of will HP filter 

 with a 2Mth zero at f=0 [14].  As indicated in Figure 2,  is given by [14] 
)t(v

)(M τ2
,vσ

)}n  (1) {MS)( 1
M

2
M,v Δλ=τ − t(v)( Mτ

)t(v)

σ

where  is the forward difference operator over the separation interval τ defined by [14] )(τΔ

 t(v)t(v)( −τ+=τΔ   (2) 

and the normalization constant is defined as [14] 
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Figure 2.  Mth-order difference variances. 

 

We note that this definition of  makes all M orders of  equal for uncorrelated white noise [14]. 
The MS operation in (

Mλ )(2
M,v τσ

o1) is over N samples at on τ+=  ( 0 1−= Nton ), so that the samples again fall 
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within a total observation interval oNT τ= , where oτ  is the sampling interval.  There is more than one 
way to take the MS over the data, and we will discuss this later in the Mathematical Niceties Section. 
 
THE  HIGHPASS  FILTERING  OF  NOISE  DUE  TO  INFORMATION  EXTRACTION 
 
The common wisdom is that the rigorous form of the MS residual is divergent in the presence of negative 
power law (neg-p) noise.  This paper will show that this common wisdom is wrong, because the process 
of optimally estimating the causal function HP filters the noise in the residual error.  We will also show 
that the order of this HP filtering increases with the complexity of the information extracted from the data, 
as expressed by the number of parameters M in .  Thus, if one is free to choose the complexity 
of , the residual error is guaranteed to converge for any negative power in . 

)v ,w A,t(M

(2
jv−σ

),t(v M,w A )f(Lv

  
This HP filtering of the noise in the observable residual error allows one to eliminate additional filtering 
in the definitions of jitter and wander.  Thus, we will redefine the jitter simply as the observable residual 
error without such additional filtering.  Later in the paper, we will show that the needed HP filtering is 
supplied by a combination of the LSQF process and other system related filtering.  The wander will then 
be redefined as the difference between the estimated and true causal functions, which we will show is LP 
filtered by the same system related filtering processes as the jitter.  These new definitions solve the 
relationship problem between fc and system parameters for general user systems.  They also allow one to 
generalize the concepts of jitter and wander to include variations in any variable and the removal of any 
type of causal behavior. 
   
MTH-ORDER  DIFFERENCE  VARIANCES  AS  MEASURES  OF  RESIDUAL  ERROR 
 
The paper will also show that  is a measure of  for any N when  is an 

 polynomial and the MS operation for  uses the “unbiased” estimator; that is, it 
divides the sum in the MS operation by 

)M/T(M

N

2
,vσ )M,N(2

jv−σ

)

),t(v M,a A
th)1M( − M,N

M− .  Unbiased is in quotes because it is the true unbiased 
estimator only for uncorrelated white noise [20,21].  This relationship between and 

 is well- known for the Allan or two-sample variance  [13][23] or , which has 

been related to the N-sample variance  [23,24] or  using Allan-Barnes “bias” functions 

[23,24].  We will generalize this argument to relate  to  using a similar bias 
function concept, except that, in our case, we will hold the total observation time T constant as N varies.  
Because of this difference, the bias function relating to is much less dependent on 
p than in the Allan-Barnes case, and we will show that there is a simple approximate form for our bias 
functions independent of p.  

)M/T(2
M,vσ

)1,2()M,N(2
jv−σ )(2

y τσ

)1,N(2
jy−σ

)M/T(

)M/ (2
jv−σ

2
jy−σ

),ττ,N(2
yσ

)M,N
th

2
M,vσ

T(M,

)M,N(2
jv−σ

)M,N2
vσ

This brings us full circle, showing that residual variances, jitter, and Δ-variances measure the same type 
of random error when a polynomial is used to model the causal behavior of the data.  This relationship 
between  and  also yields a physical interpretation for the well-known 

insensitivities of  to -order or lower polynomial causal aging behavior [25,26]. 

)M/T(2
M,vσ

(2
M,vσ

(2
jv−σ

)1M( −)τ
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MATHEMATICAL  NICETIES 
 
DATA,  NOISE,  AND  RESIDUAL  ERROR  MODEL 

Figure 3 shows the model we will use for the N data samples  and the various types of residual 
errors we will be defining.  Let us represent the total (continuous) data variable as                        

)t(v n

)t(v

  (4) )t(v)t(v)t(v pc +=

where  is the true causal function imbedded in the data and  is the true random noise.  We will 
assume that and, thus,  and , have been pre-filtered by a system response function written 
as  in the time domain and  in the frequency domain such that 

)t(vc

)t

)t(vp

)t(v )t(vc

H

)t(vp

)(hs f(s

  (5) )'t(v)'tt(hdt)t(v ins −= ∫
+∞

∞−

 
where  is the variable prior to system filtering [5,6,27].  describes the filtering action of the 
system on the variable over and above any filtering introduced by the LSQF.  It is well-known that such a 
filter acting on the pre-filtered noise variable corresponding to  will produce an output PSD of 

when the pre-filtered PSD of the noise variable is  [10].  Thus, the PSD of the post-
filtered  will be written as  in this paper, so  explicitly appears in spectral 
formulas. 
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Figure 3.  Data model and residual errors. 

 
 
We will further assume the model function  is linear in A, so it can be represented by  ),t(v M,w A

  (6) )t(ua),t(v nmm

1M

0m
nM,w ∑

−

=

=A

where the  are a set of (not necessarily orthogonal) basis functions.  An important class of 
 that we will discuss consist of polynomials, for which . 

)t(um

),t(v M,w A m
nnm t)t(u =

  
The observable residual error  is thus  )t(v nj

 ),t(v)t(v)t(v nM,wnnj A−=  ( 7)  

and its MS or variance is given by 

 . ( 8)  )}t(v{MS nj
2

jv =σ −
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In this paper, we will define  above as the jitter.  The true function error is given by  )t(v nj

v )t(v),t(v)t( ncnM,wnw −= A  ( 9)  

and its MS or variance is given by  

 . ( 10)  )}t(v{MS nw
2

wv =σ −

For this paper, we will define  above as the wander, which one can see is not directly observable 
variable, since one must know either  or  to generate it from the data.  More will be said about 
this later. 

)t(v nw

vc )t( )t(vp

 
We note, from (4) and (7) and , that we can write  )t(v nw

 . (11)  )t(v)t(v)t(v wjp +=

Thus,  and  sum together to form the total noise just as conventional jitter and wander do. 
Later in the paper, we will show that  and  have HP and LP properties similar to those in the 
old definitions [4,11,12], but with their HP and LP properties completely determined by  and the 
LSQF estimation process. 

)t(v nj )t(v nw

)t(v nj )t(v nw

)f(Hs

 
MTH-ORDER  DIFFERENCES  
 
We note that  can be written in expanded form as [27] )t(v)( n

MτΔ
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Thus,  in (Mλ 3) can be written as  

 . (14) ∑
=

=λ
M

0m

2
M )m,M(c

As an additional note, (3) and (14) correct a typographical error in [27] in which the upper limit of the 
sum was mistakenly written as . 1M −

DEFINITION  OF  MEAN  SQUARE  OPERATION 

The MS operation for statistics of variances will be defined as 

 . (15) ∑
−

=

ξ=
1N

0n

2
nnn |)t(z|)}t(z{MS

This can represent various types of mean square operations depending on the values of n,uξ  and the form 
of .  The unweighted biased MS is, thus, given by , and the “unbiased” MS is given by 

.  One can also use various combinations of 
)t(hs

N( −=

1
n N−=ξ

n
1

n )M −ξ ξ  and  to represent overlapping, )t(hs
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modified, or total averaging MS operations [11,14,26].  In theoretical variance representations of the MS 
operation (see Appendix A), we will assume the ensemble average or expectation operator E{…} has 
been applied in addition to the MS operation defined in (15).  

THE  HIGHPASS  FILTERING  OF  NOISE  DUE  TO  INFORMATION 
EXTRACTION 
 
In this section, we will first explain intuitively and graphically how and why the LSQF estimation of 

 using  HP filters the noise in the residual error; then we will formally prove this assertion. 
 For the intuitive explanation, consider Figure 4, where we show LQSF solutions for various power-law 
noise indices p .  For  (white noise), one can see that the solution behaves in the classical manner 
[1], with  closely tracking .  Using classical LSQF theory [1], one can show that 

 with  as 

)t(vc

(v M,w

),t(v M,w A

),t(v M,w A

)t(vc→

0p =

vσ −

)t(vc

),t A 0w → ∞→N  as long as the bandwidth of the data is such that the data 
samples remain uncorrelated for any value of N.  For 4and2p −−=  (neg-p noise), however, one can see 
there are significant systematic long-term deviations in  from  for the large N case shown. 
 This is due to the highly correlated nature of neg-p noise.  In fact, using LSQF theory for correlated 
noise, one can show that these deviations will remain non-zero as 

),t(v M,w A )t(vc

∞→N , because  will track 
components in the noise with Fourier frequency f approximately equal or less than  (for an 
unweighted LSQF), regardless of the value of N.  (It is noted that T is fixed as N is varied and, for a 
weighted LSQF, that , where Teff is determined by the weights 

),t(v M,w A
/1fT = T

effTT /1=f nξ  as well as the total time T.)  
This tracking of low-frequency (LF) noise arises because of the well-known inability of an LSQF to 
distinguish between causal behavior and noise that is correlated over the measurement interval [1].  It is 
this tracking that causes the noise to be HP filtered in  and  with an HP cutoff knee at 
approximately .  One should point out that this LF tracking also occurs for white noise, but is only 
apparent for neg-p noise, because virtually all the power in the neg-p noise is in Fourier components with 

 (for any value of T). 

)t(v j
2
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Figure 4.  Simulated least squares solutions for various p values. 

 
 
One can write a spectral representation for  as 2

jv−σ

 . ( 16)  2
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2
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2
v-j σ(f)dfK(f)|(f)|HL2σ += ∫

∞

The left term in (16) is a previously published spectral integral [5,6,27] that describes the -
dependent part of .  In this paper, a new term, , has been added in (

)f(Lv
2

jv−σ 2
v-cσ

vw

16) to include the effects of 
model error. This term arises when the complexity of  is not sufficient to follow the variations 
in  over the observation interval T (See Appendix A for more detail.).  In the integral part of (

),t(M, A
)t(vc 16), 
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there are two factors,  and , that can HP filter .  As discussed in the Mathematical 
Niceties Section,  represents the explicit filtering action of the system under consideration on the 
data variable  [5,6,27].   in (

2
s |)f(H|

)f

f

)f(K jv−

2|)f(

1

)f(Lv

s )f(H|

Hs

(Hs

)t(v sH|

<<

16) replaces the simple LP cut-off  used in previous 
formulations of the spectral integral to model the system [8].    is a more accurate representation 
of a system’s specific filtering properties than  and can be shown to have HP as well as LP behavior for 
many types of systems [5,6,27].  The importance of such HP filtering from  is that it helps  

converge in the presence of neg-p noise and, in fact, in and of itself can ensure the convergence of  
for some or all of the common neg-p values [5,6,27]. 

hf

2|

H| s

2|

)f(

hf

s f(H

s )f(H| 2
jv−σ

2
jv−σ

)f dτπ

 
A classic example of a system response function is the “delay”  shown in Figure 5.  This well-
known response function arises when one mixes a signal with a delayed version of itself, as in a delay line 
discriminator, radar system, or two-way ranging system [27].  One can show that  
for such a system [27].  When , this  |  is proportional to 

(sin4|)f( 22=
2|) 2f , which by itself allows σ  to 

converge for neg-p noise with . 

2
jv−
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~ D τd
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Figure 5.  Delay system response function. 
 
 

)f(K jv−

)f(K jv−

 is a spectral kernel that describes the spectral properties of the LSQF and MS generation process 
independent of the system response filtering [6,27].  In Appendix A, exact formulas are derived for 

 and an equivalent  for  in terms of a spectral decomposition of the  basis 

functions, , and .  Also derived in Appendix A is a similar kernel for  in terms of a 
dual-frequency PSD for the nonstationary .  In the next subsection, we will prove that  

)f( 2
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  when is an (M-1)th-order polynomial (17) )1<< ),t(v M,a A

   when is any function with a DC component. (18) jv )f(K − )2'≥ ),t(v M,a A

 
Figure 6 shows the results of a simulation verifying that (17) is indeed true for  and 5to1=M 1000N = . 
This verifies that has the required HP filtering properties for fT)f(j−K v 1<<  to ensure that  will 
converge for any neg-p value, if one can choose the form of . 

2
jv−σ

),t(v M,w A
 
PROOF  OF  NOISE  HP  FILTERING  FOR  RESIDUAL  LSQF  ERROR 

Let us now prove assertions (17) and (18).  We will prove (17) by decomposing the data  into 
components 

)t(v n

  (19)  )t(v)t(v)t(v ncnf
f

n +=∑
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where the  are single-frequency noise components that sum to generate the total noise 
.  Because of the linearity of  in A given by (

ft2j
ff eV)t(v π=

)

)t(v np

,t(v M,w

(vc

),t(v M,a A 6), we note that the LSQF solution  
 for the total input can be decomposed into the sum of LSQF solutions for the separate  

and  inputs, or  
)A

t n

)t(v nf

-3 -2 -1 0 1
-200

-150

-100

-50

0

   M=1

   M=2

   M=3    M=4    M=5

log10(fT)

K
r-

av
,M

(f
) i

n 
dB ao

ao + a1t

-3 -2 -1 0 1
-200

-150

-100

-50

0

   M=1

   M=2

   M=3    M=4    M=5

log10(fT)

K
r-

av
,M

(f
) i

n 
dB ao

ao + a1t Simulation
Results
δM < 1E-3 

∝ f2

∝ f4

∝ f6 ∝ f8 ∝ f10K
v-

j(f
) i

n 
dB

Log10(fT)(N=1000)

HP 
Knee

fT ≅ 1/T

HP 
Knee

fT ≅ 1/T

(Unweighted LSQF)  
 

Figure 6.  Simulation showing for M2
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1fT <<  for an (M-1)th-order polynomial 
model function (and an unweighted LSQF). 
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Also, because the spectral noise components  for a wide-sense stationary noise process  are 

uncorrelated with each other [10] and with , we can use (
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and where E{..} the expectation value has been added to the MS operation in order to generate  in 
terms of the PSD  (see Appendix A).  Thus, since (

2
jv−σ

)f(Lv

K v

}}

16) is just the infinitesimal limit of (21), the 
spectral properties of  in ()f(j− 16) can be determined by considering the LSQF properties of each 

term separately. |)t(v{|MS{E 2
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where t’ is somewhere in . We then note that the residual error  and, hence, 

, would be zero, if  were given only by the right-hand finite sum term in (

]t,t[ 0

v

t( )f(A,

}}

)t(v nfj−

}}|)t(v{|MS{E 2
nfj−

{|MS{E

)t(vf

t( f(
M A,

23). 

This is because the model function  and the finite sum term would then both be (M-1)th-order 
polynomials, so the fitted  would be exactly .  Thus, when the Taylor series converges, 
the value of must be proportional to the square magnitude of the right-hand term in 

(

))
,w

)

M2

v M,w

|)t 2
n

)t(vf

(v fj−

23).  This term is proportional to f  and, therefore, we must have  for M2 fjv f)f(K ∝− 1)t't( 0 <<−  or 
, which is just (1fT << 17).  

 
To prove (18), we note that a DC component is a 0th-order polynomial.  Therefore, by using (17) with 
M=1,  must be at least proportional to )f(K jv−

2f  for 1fT << . 
 
HP  AND  LP  PROPERTIES  OF  JITTER  AND  WANDER  DEFINED  AS  RESIDUAL  LSQF  ERRORS 

 
Now, let us discuss the HP and LP properties of jitter and wander defined as  and .  The 

exact HP and LP properties of  and  can be derived from the formulas for  and  
given in Appendix A.  Here, we will discuss their overall nature.  As discussed in the previous 
subsections, the LQSF causes  to be HP filtered with a knee frequency .  Similarly, one 
can show that the LSQF causes  to be LP filtered with the same knee frequency.  This LSQF 
filtering at  is shown in the left side of Figure 7.  In addition,  filters both  and  
equally, since  has the same effect on all variables.  In the left side of Figure 7, this filtering 
is shown parametrically using an HP knee fl and a LP knee fh.  Thus, the brick-wall filtering properties of 
the jitter as  are determined by an HP knee fc that is the higher of  and fl and a LP knee given by 

, which are purely functions of system parameters.  We also note that the equivalents of conventional 
x-jitter and x-wander [4,11,12] are  and  with a 2nd-order time error polynomial removed.  
This guarantees that the x-jitter will converge for 
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6p −≥  in  without any help from , and thus 
guarantees the convergence of the x-jitter for all the neg-p noise components normally encountered. 
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Figure 7.  Jitter ( ) and wander ( ) HP & LP properties. )t(v nj )t(v nw

 
 
The right side of Figure 7 shows that the wander will disappear when ∞→T ( ) and all that will 
remain is the jitter, 

Tl ff >>
if the HP order of  is sufficient by itself to overcome the pole in  — That 

is, if  by itself guarantees the convergence of the wander.  This case is the transition to stationary 
statistics, because the total filtered noise variance must then be convergent for a finite bandwidth 
system.  Furthermore, as mentioned previously, these definitions of jitter and wander as  and 

 allow these concepts to be generalized to any type of causal function removal and any variable. 
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WHAT  TO  DO  WHEN  THE  RESIDUAL  ERROR  VARIANCE  DOES  DIVERGE 
 

2
jv−σ

v M,w

 can diverge in the presence of neg-p noise when the problem being addressed fixes the form of the 
.  In this paper, it is maintained: (a) that such a divergence is an indication of a real problem in 

the design, specification, or analysis of the system under consideration, and (b) that this real problem 
must be investigated and fixed, not sidestepped.  From the discussions in this paper, it is obvious that the 
HP filtering properties of  are fixed by , the  measurement interval T, and  as 
given by the system specification (or problem definition) and design.  Thus, such a divergence must 
indicate: (a) that something is essentially wrong with the system design or spec, or (b) that the system is 
okay, but faulty analysis generated a perceived (non-essential) divergence.  For Case (a), the system itself 
has to be changed to correct the problem, and for Case (b), the system does not have to be changed to 
correct the problem, just the improper analysis. 

),t( A
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Figure 8.  Cycle slips in a 1st-order phase lock loop due to 3f −  noise. 
 

 
The best way to understand how to deal with such divergences is to use the specific example of an 
essential divergence shown in Figure 8.  Here, a 1st-order phase-lock loop (PLL) is operating using a 
reference oscillator with 3f −  phase noise. As shown in the figure, such a PLL will cycle slip because of 
the  3f −

2
j−φ

 noise [27].  An indication of these cycle slips appears in the linear loop analysis as a divergence 
in  for  (no  removal), where φ is defined in Figure 8.   diverges in the linear 

analysis because  for a 1st-order PLL is proportional to  and  for 

σ 0M =

|

),tv A

)

(M,w

2|

2
j−φσ

s f(H 1fforf 2 << 1)f(K j =−φ 0M = , 

and this combination of HP orders are not insufficient to overcome the 3f −

2
j f)f(K ∝−φ

pole in .  One could 
increase M in  to resolve the divergence in the linear model (  or higher), but this will not 
keep the PLL from cycle slipping!  Thus, one can see that arbitrarily changing the error measure to 
eliminate the divergence in the analysis does nothing to solve the actual cycle-slipping problem. 

)f(Lφ

2
j−φσ
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One can fix the real problem in two ways.  First, one can change the design and eliminate the cycle slips 
altogether.  This is accomplished simply by changing to a 2nd-order PLL, for which  (42

s f|)f(H| ∝ 1f <<

2
jv−

) 
[27].  Second, one can allow occasional cycle slips, because the system users can tolerate them.  
However, one must then change the system spec so the phase noise without the slips can be properly 
measured.  This is accomplished by specifying that  is to be measured excluding data containing 
cycle slips, which effectively changes .  In addition, one should also include a mean time to cycle 
slip requirement in the spec to ensure that the cycle slips don’t become a nuisance.  An example of a non-
essential divergence is simply the failure to recognize the HP filtering due to causal extraction in σ .  

2

)f(K
j−φσ

j−φ

RELATING  TO  WHEN  IS  A  POLYNOMIAL )(2
M,v τσ 2

jv−σ ),t(v M,a A

For  data points, Appendix B shows that  1MN +=

  ( 24)  )M/T()M,1MN( 2
M,v

2
jv σ=+=σ −

when  uses the unweighted “unbiased” MS ( ) and  is an - 
order polynomial.  For M=1, (

)M,N(2
jv−σ

)2,3(2
jy−σ

1)MN( 1
n =−=ξ − ),t(v M,w A

)1,2(2
jy−σ

th)1M( −

)t(y24) is just the well-known statement that the Allan variance of  is the 
two-sample variance when hs(t) is a box-car average over τ [13,23], that is .  One can also 
analytically demonstrate that (24) is true for the M=2 case.  Thus, the Hadamard-Picinbono variance is 
equal to  (when hs(t) is a box-car average over τ), that is, when frequency offset and drift are 
modeled in the causal behavior. 
 
As shown in Figure 9, one can extend (24) to any number of samples by investigating the behavior of 
LSQF simulations as N is varied (while T and M remain fixed).   In the figure, we’ve plotted the biased 
form of the residual error deviate indicated by  ( ) versus the number of samples N.  One 
can see from the figure that  does not vary much as N increases from  to very large 
values, especially for neg-p noise.  Using this approximate invariability of  as N is changed, one 
can then write  

}v{RMS j
1

n N−=ξ

}v{RMS j 1MN +=
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Figure 9.  Errors in LSQF residuals as N is varied (fixed T and M = 2). 
 
 

We also note that one can obtain exact expressions similar to (25) for any specific p by deriving Mth-order 
 “bias” function relationships in a fashion similar to those derived by Allan [19] and Barnes [20] for the 

 case.  One should note, however, for 1M = 1M = , that our bias functions have inherently different 
behavior than those of Allan and Barnes.  This is because we fix both T and τ ( ) as N is varied, 
while Allan and Barnes fix τ as N is varied and let the total observation interval (Nτ) change with N 

τ= MT
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(Allan and Barnes define T as the time between successive tn samples, not the total observation interval.). 
 Thus, our bias functions are very close to )MN/(N −  for all N and p, unlike the Allan-Barnes bias 
functions, which vary widely with p. 
 
From the above, one can see that can be interpreted as a measure of the MS residual error 

 for any N when  is an -order polynomial.  This has several important 
consequences, which are discussed as follows: 

)
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 (a)  can be used to determine σ in residual error problems when  is an 

-order polynomial.  Thus, σ  and  can be viewed as equivalent error measures 
for these problems. 
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2
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(b) In such residual error problems, there is a great advantage in using  for , 
because one need not perform the LQSF and remove  from the raw data in order to generate 

.  This is because of the well-known insensitivity of  to - or lower-order 
polynomial behavior [14,25].  We further note that  without  removal remains 
equivalent to  with such removal even when there is model error.  This is because model error 

equally effects  and . 
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(c) (25) provides guidance about which orders of  are appropriate when it is meant to measure 
purely random error.  The interpretation of  as a measure of  shows, if one wants 

 to measure only random error when  can’t follow the variations in  over T, that 
one must remove such causal behavior first.  This equivalence of σ  and  is only strictly 

true only when .  However, for τ decoupled from T/M, one can assume that the same 
approximate sensitivity applies.  Thus, this interpretation explains the well-known insensitivity of the 
Hadamard-Picinbono variance to frequency drift and the sensitivity of the Allan variance to such drift. 
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)τ (2
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M,v τσ )t(vc
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M,v ,N

M/T=τ

  
(d) Conventional x-jitter as defined in [4-6] (but without an ad-hoc fc) is equivalent to the Hadamard-
Picinbono variance of x(t) ( ). )(2

3,x τσ

 
  
CONCLUSIONS 
 
We have demonstrated that , , and the MS jitter (without ad-hoc filtering) can all be 
viewed as essentially measuring the same type of error.  The key to this is the demonstration of three 
major facts: (a) that a statistically optimal removal of the causal behavior in the data HP filters the noise 
in the observable residual error, (b) that the order of the noise HP filtering is a function of the complexity 
of the model function used to estimate the causal behavior, and (c) that  is a measure of 

 when the model function used to estimate the causal behavior is an -order 
polynomial. 
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Table 1 shows the consequences of interpreting M = 0, 1, 2, and 3  and  as  and  
with aging removed.  An important conclusion shown in the table is that low-order variances such as 

, , and  are appropriate for characterizing “random” error in coherent frequency 
synthesizers and coherent time and frequency distribution equipment (excluding the frequency reference). 
This is because uncontrolled time or frequency offsets that are fixed over the measurement interval are 
part of the “random” error that must be considered in specifying such devices; that is, these devices are 
not supposed to have such uncontrolled, but fixed, offsets.  On the other hand, such fixed offsets are 
generally not considered part of the “random” instabilities in oscillators, where higher-order difference 
variances are used, but are modeled as causal error or compensated for using PLLs or other similar 
techniques. Therefore, the precision oscillator community uses higher-order difference variances as 
measures of “random” error.  This difference in application explains the dichotomy in the use of variances 
between some producers of time and frequency distribution equipment [4] and producers of precision 
oscillators [13].  

)(2
M,x τσ )(2

M,y τσ 2
jx−σ 2
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)(2
0,x τσ )(2

1,x τσ )(2
0,y τσ

 
As a final note, consider the difference between  and  in Figure 9.  The simulations in this 
case utilized an  with , so the theoretical wander is effectively divergent.  We see from the 
figure that  (for large N, using (

wv−σ }v{RMS j

)f(Hs

RMS>
Tl ff <<

jv−σ≅

wv−σ

jwv }v{−σ 25)).  Thus, the observable error is underestimating 
the true function error, as is expected from correlated LSQF theory.  In fact, in running multiple Figure 9 
simulation sessions, one sees  vary widely from run to run, while  or  remains stable. }v{RMS j jv−σ

   
Table 1.  Difference variances of y(t) and x(t) as residual error variances with aging removed. 
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Thus, in order to get a reliable estimate of   over T, one must take data over periods much longer 
than T and determine the power law structure of the true noise (except for the case where  
alone guarantees convergence and ).  Then one can use the formulas in Appendix A to estimate the 
true expectation average of  using  accurately determined from the data over the period >> T.  
This is where the classic techniques involving the use of the modified Allan variance or direct spectral 
measurements are invaluable [13].  Thus, the final conclusion of this paper is the well-known fact in the 
PTTI community that one must perform careful analysis and measurements over periods >> T to 
determine good estimates of the true causal function error or true residual error when neg-p noise is 

wv−σ

)

)t(vp )f(Hs

Tl ff >

Lwv−σ f(v
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involved.  The exception for this is again the case where  alone guarantees convergence and . 
 In this case, the wander is not divergent and the  is such that the estimate of the causal function 
from data over T is a good one. 
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n
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APPENDIX  A.   DERIVATION  OF  THE  SPECTRAL  KERNELS 
  
In this section, we will derive the kernels  and  for  and  and a dual-frequency 

kernel  for .  For generality, we will let  and  be complex and the weights 

)f(K jv− ) 2
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)t

2
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)f,f(K gcv−
2

cv−σ (vc ξ  be 

arbitrary.  To generate these kernels, we will first minimize  the sum of the squares weighted by the 
, which can be written in matrix notation as  
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(a)  is the complex conjugate transpose of the M-element column vector  ( the 
transpose).  

†A )'a,...a,a( 1M10 −=A is'

)t(um(b)  is an M-element row vector representing the M basis functions  
for  in (

))'t(u),...'t(u),'t(u()'t( 1M10 −=U
),t(v M,w A 6), and we note that  in this notation is ),t(v M,w A

 A),t(v M,w = . (A.2) 

(c) <<…>>  is the weighted average over the data samples (denoted by the dummy time index t'), which, 
for the purposes of relating the LSQF to continuous Fourier transform PSDs, <<…>>  is defined as  
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(d) , , and  are all assumed to be filtered by the system response function hs(t) as in ()t(v )t(vp )t(vc 5).  

In the well-known manner, we differentiate  with respect to  to obtain the following LQSF solution 2χ †A

  (A.5) <<= 't(UQA
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where: (a) the Green’s function  is  )'t,t(gw

 . (A.9) )'t()'t()t()'t,t(g †
w ρ= QUU

(b)  is the complex conjugate of the Wigner-Ville spectrum [29] of  is )f,t(Gw )'t,t(gw
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Note that  alone is the Fourier transform of the time domain variable before being convoluted with 
, so that  is explicitly shown in the right side of (
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H)t(hs )f(s A.8). 

We note from (A.2) that  is linear in , and thus the LSQF solutions (),t(v M,w A
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before  is applied).  We note from ((hs
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A.14) and (A.16) that  is the model residual and  
and  are the jitter and wander solely due to , which add together to produce  just like the 
total jitter and wander  and .  
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By taking the ensemble average E{…} of the square of  and  from ()t(v j )t(vw A.14) and (A.16) and 
assuming  is uncorrelated with , one can write )t(v )t(vp c
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  (A.17) 
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 . (A.20) )}2/t(v)2/t(v{E),t(R)}2/t(v)2/t(v{E)(R g
*
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*
pgpv τ−τ+=ττ−τ+=τ

In the above, is  is the rotated Loève spectrum [29,30] of  given by the double Fourier 
transform of the rotated double time autocorrelation function R .  The term rotated comes from 

writing the lag function  in terms of the “rotationally” transformed global time 
 and local or differential time 

)f,f(L gc )t(vc

),τt(
*

+= )tt(

gc

)t(v)t(v 2c1c

)tt(5.0t 21g 11= −τ .  When v(t) is real, we note that   

    [v(t) real] (A.21) 
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If we now integrate (A.18) over t from −∞  to ∞ , we obtain our final result 
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Where our kernels are 
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APPENDIX  B.   VERIFYING  THAT   (T/M)σ1)(Mσ 2
Mv,

2
jv =+−

 
In this appendix, we will verify that (25) is true when  is the “unbiased” uniformly weighted residual 

variance ( ).  To do this, we will show that the stronger assertion  

2
jv−σ

1
n )MN( −−=ξ

  (B. 1)  Mo
M

nj /)n,M(c)]t(v)M/T([)t(v λΔ=
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is true by Monte Carlo simulation.  One can show (B. 1) guarantees (25) by using (12) and (B. 1) as 
follows 

  (B. 2)  
)M/T(|)t(v)M/T(| 2

M,v
2

o
M1

M σ=Δλ= −

1MN

|)n,M(c||)t(v)M/T(||)t(v|)1M( 2
M

0n

2
M

2
o

M2
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M

0n

2
jv λΔ==+σ

=

−

=
− ∑∑

 (B. 1) has been verified by Matlab simulation for multiple random data sets (runs) up to .  Above 
this M value, the Matlab LSQF code used ran into precision difficulties in the computation of . 
An example Matlab simulation for  is shown in Table B-1.  Thus, one can say that (

18M =
vw ),t(M, A

5M = 25) is true for 
any M with an extremely high confidence because of the detailed nature of assertion (B. 1). 

To understand analytically why (B. 1) is true, let us reformulate the notation of Appendix A into one more 
suited for an unweighted LSQF.  Let us define the following +=  element column vectors 
( ): , , Mto0n = )n,M(cn =C )t(v nn =V )t(v njn,j =V , and UAAV == ),t( nv M,ww

1

, where  (M+1 
rows for index n and M columns for index 

m

M
nm,n t=U

to0m −= ).  We also note that (12) can be written as 
 and (VC†

o ) =M (v)M/T(Δ t B. 1) becomes 

  (B.3) Mwj
† /V λ=−= CCVVV

where  in (Mλ 14) becomes 

  

Table B-1.  Monte Carlo verification of (B. 1) for M = 5. 

 
Run  1 2 3 4 5 6 

Δ(T/M)Mv(t0) -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
λMvj(tn)/c(M,n) 

t0 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
t1 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
t2 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
t3 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
t4 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 
t5 -4.3818 -20.6668 -15.3472 -11.062 -3.9762 7.6004 

 

  (B.4) CC†
M =λ

and  from (2χ A.1) becomes 

 . (B.5) ))(( †††
j

†
j

2 UAVUAVVV −−==χ

Regenerating the LSQF solution by taking the derivative of (B.5) with respect to , we obtain †A

  (B.6) 0)(†
j

† =−= UAVUVU

which yields the unweighted LSQF solution 
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  (B.7) VUQUV †
w =

where  . UUQ †1 =−

If we insert (B.3) into (B.6), we obtain 

  (B.8) 0†† =VCCU

and note that this must be true as a necessary condition for (B.3) to be the LSQF solution.  To show this, 
we note from (12) that 0CU =†  as follows 

  (B.9) 0CU =τΔ=== −
−

=

−
−

+

=
∑∑ 1m

0
M

1M

1n

1m
1n

1M

1n
m,n

† t)(t)n,M(c)n,M(cU

because the Mth-order difference of an (M-1)th-order or less power of t is zero [14].  Thus, (B.3) satisfies 
this necessary condition with any arbitrary Mλ .  Multiplying (B.6) by †A  yields the well-known 
orthogonality principle for an LSQF, which states that the residual error jV  is orthogonal to the estimated 
functio wV .  Thus, (n

d (B.7

 (B.10) 

hich is useful in simplifying the calculations for the spectral kernels in Appendix A for the unweighted 

 
 trying to analytically prove that must be the unique LQSF solution, some mathematical 
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