Comments on the Debate over the Proposal to Redefine UTC

Presented to the General Assembly of the International Union of Radio science (URSI)
August 18, 2014
Beijing, China

Dr. Demetrios Matsakis
U.S. Naval Observatory
Disclaimer

• Official policy of the U.S. Government supports the ITU resolution to redefine UTC
 – US policy is based upon public input from both government and private sectors
 – The web sites noted in this talk are for general interest only

• This presentation includes personal observations of the presenter, which are not necessarily indicative of the motivation behind official policy.

• The numerical computations are predictions by the author. They ignore global warming, glacial rebound, and other factors.
Modern Life has LONGER days

~470 million years ago, day lasted only 21 hours
- Data from fossilized nautiluses, corrals
- Slowdown rate of ~2.3 mts/day/cty

Earth has lost 14 hours since 1815 BC
- Data from Chinese solar-eclipse records
- Slowdown rate of ~ 1.9 mts/day/cty

Earth has lost 3.25 hours since 136 BC
- Data from Babylonian solar-eclipse records
- Slowdown rate of ~ 1.4 mts/day/cty
Length of Day (LOD) 1620-2014

Measurement noise is insignificant. Variations are real, but their causes are unknown, in particular with regards to global warming.

UT1: Random Run on Recent Decadal Scales
(if so, the best predictor of Earth’s rotation rate is its current value)
When will UTC as-is need revision?

Note: after (if) ice-caps melt, the slow-down rate will revert to larger values by 2100, most estimates predict a sea level rise of 0.5-2.0 meters - we have “70 meters of sea-level rise” stored in polar ice.
Length of Day - 3 (wild) extrapolation models

1 Billion AD, oceans boil
4 Million AD, no more leap years
1 Million AD, Fermi scale to colonize galaxy
74,000 AD, 1 leapsec/day
7760 AD, 1 day lost
3135 AD, 1 hour lost

Log (Calendar Year) Note: log function distorts mostly linear shape

- dLOD=1.4 mts/day/cty
- dLOD=1.7 mts/day/cty
- dLOD=2.3 mts/day/cty
How much time would be “lost” by 2100, if we redefine UTC?

- Answer: most likely <1 minute
 - Last leap second might be in 2020
 - 80 years yields 30 seconds
 - At current rate of 1 every 3 years
 - continued slowing down would add another 10 seconds
 - if Earth is rotating 0.25 sec/year slower in 2100
 - \[20= \frac{1}{2} (80\times0.25)\]
 - But decadal fluctuations cannot be predicted

- Some British sources give larger values to public
 - a BBC documentary says 1 minute in “a few decades”
 - http://leapseconds.co.uk/background/ has 2 minutes
 - This is a minor error. The site has several good things in it, see later
The proposal before the ITU

• Applies to Radiocommunication only
• Laws are NOT the subject of this proposal
• The decision is made by official representatives of sovereign states
 – Scientists will advise on technical matters
 – For example:
 • UTC to remain an excellent approximation to GMT for centuries
 • The costs of redefining UTC
 • The price of keeping UTC unchanged
 • The risks and benefits either way
The Debate

Officially in favor: USA, Japan, France, others
Officially against: United Kingdom (England), Russia
Generally in favor: timekeeping scientists, including English and Russian
Also in favor: BIPM, the institution that generates UTC
How do the English tabloids represent it?
Do the 1-second UTC jumps keep it “in harmony with the universe”?

- ”Absolute time flows evenly with no respect to external phenomena.”

 – Isaac Newton, *The Principia*

- Gamma-Rays Prove Einstein Right: Space-Time Is Smooth

 “After 7 billion years of travel, high and low energy photons arrive at NASA's Fermi spacecraft a mere 900ms apart, suggesting that space-time isn't the bubbly foam of quantum theory but seems closer to Einstein's smooth rubbery membrane.”

Do we need leap seconds to keep humans in harmony with the solar cycle?

• In a typical workday at USNO
 1/3 arrive before 7 AM
 1/3 arrive 7 AM-8 AM
 1/3 arrive after 8 AM

• By the time UTC-UT1 = 30 minutes
 1/3 will arrive before 7:30 AM
 1/3 will arrive 7:30 AM-8:30 AM
 1/3 will arrive after 8:30 AM

• Schools, factories, and teleworkers too

• But nothing will have changed with respect to daylight
How is civil time now defined?

• Typically, as an offset to UTC

• Example: China’s civil time = UTC+8 hours.
 – Geographically, it could encompass 5 time zones

• That offset can be changed as necessary
Translators may have to footnote time-of-day, as they now footnote currency units, and calendars - Yes, but that’s much easier than other issues

An example from Canterbury Tales, written the year 1340, or was it 1370?

Lines 10-15 of the Man of Law’s Tale
And therefore by the shadow he took his wit
That Phoebus, which shone so clear and brighte,
Degrees was fyve and fourty clombe on highte,
And for that day, as in that latitude,
It was ten of the clokke, he gan conclude,
And sodeynly he plighte his horse aboute.

As Translated at
http://sites.fas.harvard.edu/~chaucer/teachslf/mlt-par.htm#INTRO
And therefore by the shadow his wit told him
That Phoebus, which shone so clear and bright,
Five and forty degrees had climbed on height,
And for that day, in the latitude,
It was ten o’clock*, he did conclude
And suddenly he pulled his horse around.

* Had time been measured with a continuous atomic timescale since Chaucer’s days, the translation would have been ~10:30.
Must UTC be renamed?

• One of the ISO’s 290 committees advises doing so
 – to *prevent* confusion
• But metrologists do not do such things
• For the obvious reason: to *avoid* confusion
 – GMT redefined in 1925 (day change at midnight, not noon)
 – UTC itself, when it did frequency adjustments only, i.e. no leap seconds, 1966-1971
 – More recently, the meter and the kilogram
• And the IAU redefined the term “planet” in 2006
• Who would be confused?
 – Most humans think the world runs on GMT
 – It would not confuse future pulsar astronomers
 • UTC and local times are just a means to compute Terrestrial Time (TT)
 • TT is published as a time series function of UTC: TT-UTC
• The redefined UTC would better fit its definition
 – *U* is for Universal time standard
 • Universal means followed by all
 • Universal means in tune with the universe
 – Some believe it means in tune with the Earth’s rotation, as in UT1 and UT2
 – But maybe UT1 means universally accepted time #1, which happens to be in tune with the Earth’s rotation
 – *T* is for Time
 – *C* is for coordinated between laboratories
Will the Astronomical Almanacs break?

• Changes would have to be made
 – Some computations simplified if |UT1-UTC|<1 s
 • Rise and Set Times
 – But it’s the opposite for occultations and eclipses

• Adjustments of similar difficulty are often made
 – To implement IAU resolutions, new models, etc.

• Almanacs typically printed 1-2 years in advance
 – ensuing UT1-UTC error < granularity of printed versions

• On-line almanacs have no problem either way
Will sundials break?

• Most have dials that can be rotated easily enough
 – But not all
• Claims that shadows will not stop pointing due north at midday are incorrect
 – Such as “Sundials and shadows” tab in http://leapseconds.co.uk/background/
 – Shadows will stop pointing north at 12:00
 • They don’t exactly do that now
 – Time Zones, Daylight Time (Summer Time)
 – “Equation of Time”: up to 16 minutes
• The errors introduced by the Equation of Time imply a sundial would not have to be reset for 500 years
• Use of an updated analemma would extend the life indefinitely

Position of Sun at 12:00 each Sunday of a year
Will Celestial Navigation Fail If We Redefine?

• Best sextant accurate to 1 arcminute
 – Or 4 seconds of time on the equator (1.85 km)
 – Or 5.2 seconds of time at Beijing latitude

• Therefore celestial navigation tables and clocks must be accurate to 4 seconds (4 leap seconds)
 – At least their extrapolations must be

• Percentage of navigators who can do celestial navigation is falling
Will Space Systems Fail if UTC is redefined?

• The preferred style for space is to do as much computation as possible on the ground
 – Space vehicles are given specific directions from Earth

• NASA, ESA, JAXA, and the U.S. Department of Defense all have considerable space assets and either support the redefinition or have not objected
Will religious events be mis-timed?

• USNO computes times relevant to several religions
 – Holidays, moonrise, sunrise, moonset, sunset, etc.
 – Others do too

• The user
 – May have to know his location
 – Then reads answer from internet, newspaper, or app

• Redefining UTC will not affect such religious applications
Will Earth rotation specialists lose their function?

• This has been proposed as a reason to oppose
• Users that require UT1 will become more visible as they must actively access it
 – Unless they get it from GNSS
 • But GNSS systems, already users, will also become direct re-broadcasters and therefore more prominent users
• The role of the IERS, as the disseminator of UT1, will therefore be enhanced
How Much Does it Cost to Convert?

• Most dollar-cost estimates are N*$10K
 – Similar in magnitude to what is routinely spent to insert each leap second.
 – Usually based upon staff or contractor time to inspect many lines of computer code
 – USNO’s estimate for its 1.5 m (61”) telescope at Flagstaff, optical interferometer, and VLBI correlator is negligible
 – Some estimates are larger, and based on Y2K cost estimates
 • Many question such estimates

• 5-year notice period helps
 – Could be increased as result of discussions
Will users have no way to access UT1?

- Many already get UT1-UTC directly with internet
- Creation of special UT1 time-services is assured
 - UT1-disseminating NTP servers will be set up
 - USNO has offered to do it
 - For specific users only
 - To avoid confusing the public
 - Adding an option to standard NTP has been suggested
 - In which case every server could provide it
 - GPSIII to broadcast UT1-UTC
 - And probably all GNSS will do so
- Some systems could be run on UT1 directly
It has been proposed to have two timescales

• Proliferating timescales is asking for trouble
 – The BIPM quickly abandoned a display of TAI along with UTC

• One proposal would set up parallel alternative systems broadcasting a continuous time
 – This would double the cost of GPS!

• Another proposal would endorse GPS’s navigational timescale as a continuous timescale alternative
 – But this doesn’t address the problems of leap seconds
 • Some systems already use it this way
 – The difference between GPS time and UTC via GPS has resulted in some users being 10’s of seconds off
 • Well-designed receivers don’t let the users access the “wrong time”
What Is Risky About Leap Seconds?

... There are known knowns,

... There are known unknowns,

... But there are also unknown unknowns
NTP leap second failures are a *known known*

- If correctly configured, NTP and PTP can handle leap seconds
- Never has every NTP server monitored been known to handle a December 31 or June 30 correctly
 - At least since serious monitoring began, January 2008
 - http://www.maths.tcd.ie/~dwmalone/time/leaps/
- 10% of the servers in the “NTP pool” got it wrong in 2012
 - Most were fixed within an hour of the insertion
 - Others, not in pool, took up to a day
 - Some added a leap second on July 31, 2012
 - https://groups.google.com/forum/#!topic/comp.protocols.time.ntp/vhVlH4ENsJQ
 - Hackers have been accused of exploiting/causing this
How Important is NTP?

"Our infrastructure is held together by time - from time stamps on complex financial transactions to the protocols that hold the internet together. When the packets of data passing between computers get out of sync, the system starts to break down. Without accurate time, every network controlled by computers is at risk. Which means almost everything."

- Richard Hollingham

http://www.bbc.com/future/story/20130609-the-day-without-satellites

[Italics added for emphasis, though the point is overstated]
Software failures are a *known unknown*

- Most software undoubtedly assumes one day is 24 hours times 60 minutes times 60 seconds
- Data hard to gather as corporations, people, and institutions do not like to admit to failures or mistakes involving leap seconds
- POSIX has no built-in method for leap seconds
- Some software halts if time “goes backward”
 - Has shut down network servers, websites, commercial transactions, database control, etc.
- Some GPS receivers have gotten leap seconds wrong
 - One model failed because UTC had gone too long without a leap second
- Therefore, some facilities terminate operations when a leap second is scheduled
 - Including Japan’s legal time-stamping service, test ranges, etc.
Multiple simultaneous failures would be an *unknown unknown*

In 1 second the Earth’s surface rotates 355 meters, at the latitude of Beijing

If an airplane or ground-controller’s GPS-based system is misprogrammed

AND

If LORAN, or other possible backup, has also been disabled by leap seconds.

Something bad could happen.

Murphy’s Law is based upon unknown unknowns

“If anything can go wrong, it will”
- and quicker than you think
Will leap seconds ever be a “public known”?

• Many surveys have been conducted
 – Mostly finding little interest from those surveyed or the public
 – I conducted two URSI surveys (1999-2002 and 2002-2005)
 • In 2005, URSI decided it was best to do and say nothing
 – IERS and many other surveys
 – Astronomical Groups have not taken a stand (IAU, AAS)

• U.S. policy based on NTIA and FCC findings
 – FCC requested public input
 • The responses from the public are on the internet
 – NTIA requested government input
 • DOD and NASA, for example
 – Results were favorable to a redefinition

• Occasional references can be found in mainstream news
 – Although movie stars’ wardrobes get more attention
A relatively unknown and non-official forum that is becoming more known

http://six.pairlist.net/mailman/listinfo/leapsecs
Putting a little English on it ...

- Total number of opinions expressed in general discussion: 10
- A twitter account was set up, but no tweets were sent (at least after I signed up)
My Summation

• I have tried to reference the reasoning on both sides of the question
• I don’t see an argument against the proposal that has no strong rebuttal
• I see the strongest motivation for the redefinition to be the real-world impossibility of reliably implementing leap seconds
 – Programmers and engineers are not perfect
 – Most don’t even know leap seconds exist
• Let us not forget that, perhaps unfortunately, the proposal affects the units of time, and not time itself
ITU Passes Resolution?
- Yes → Those who must prepare do so
- No → ITU Rejects Resolution?
 - Yes → ITU Postpones Decision
 - No → Large leap second disaster?
 - Yes → Back to the ITU right away
 - No → Back to the ITU after 20 years Or after 2 leaps in one year (whichever comes first)