22nd Annual Precise Time and Time Interval (PTTI) Applications and Planning Meeting

Richard L. Sydnor
Editorial Committee Chairman
Jet Propulsion Laboratory
Pasadena, California

Proceedings of a meeting sponsored by the U.S. Naval Observatory, the NASA Goddard Space Flight Center, the Space and Naval Warfare Systems Command, the Naval Research Laboratory, the National Institute of Standards and Technology, the Army Electronics Technology and Devices Laboratory, the Rome Air Development Center, and the USAF Space Command and held at the Sheraton Premiere Hotel Vienna, Virginia December 4–6, 1990

NASA
National Aeronautics and Space Administration
Office of Management
Scientific and Technical Information Division
1991
EXECUTIVE COMMITTEE

Sheila C. Faulkner, Chairman
U.S. Naval Observatory

David W. Allan
National Institute of Standards and Technology

Paul Bergschneider
Space and Naval Warfare Systems Command

James A. Buisson
U.S. Naval Research Laboratory

Morton A. Dubinsky
Space and Naval Warfare Systems Command

Hugh S. Fosque
NASA Headquarters

Raymond Granata
NASA Goddard Space Flight Center

Dr. William J. Klepczynski
U.S. Naval Observatory

Dr. Arthur O. McConbrey
National Institute of Standards and Technology

Dr. John R. Vig
Army Electronics Technology and Devices Laboratory

Dr. H. Beat Wackernagel
USAF Space Command

Dr. Joseph D. White
U.S. Naval Research Laboratory

Dr. Gernot M.R. Winkler
U.S. Naval Observatory

Dr. Nicholas F. Yannoni
Rome Air Development Center

Ms. Nicolette Jardine
U.S. Naval Observatory
OFFICERS

GENERAL CHAIRMAN
PAUL F. KUHNLE
Jet Propulsion Laboratory

TECHNICAL PROGRAM COMMITTEE
CHAIRMAN
DR. MARTIN LEVINE
Timing Decisions, Incorporated

ASSISTANT TECHNICAL PROGRAM
COMMITTEE CHAIRMAN
S. CLARK WARDRIP
Bendix Field Engineering Corporation

EDITORIAL COMMITTEE CHAIRMAN
DR. RICHARD L. SYDNOR
Jet Propulsion Laboratory

EDITORIAL COMMITTEE MEMBERS

T. Tucker
Jet Propulsion Laboratory
California Institute of Technology

Dr. M. Calhoun
Jet Propulsion Laboratory
California Institute of Technology

P. Clements
Jet Propulsion Laboratory
California Institute of Technology

Dr. G. J. Dick
Jet Propulsion Laboratory
California Institute of Technology

Special Editor for the Hydrogen Maser Workshop
Dr. Derek Morris
National Research Council
Ottawa, Ontario, Canada

PUBLICITY COMMITTEE CHAIRMAN
FRANCIS MULLEN
Frequency and Time Systems, Incorporated

TECHNICAL ASSISTANCE
PAUL KUSHMEIDER
Bendix Field Engineering Corporation
SESSION CHAIRMEN

SESSION I
Dr. G. John Dick
Jet Propulsion Laboratory

SESSION II
Dr. Giovanni Busca
Observatoire Cantonal de Neuchatel

SESSION II A
Phillip Talley
The Aerospace Corporation

SESSION II B
Dr. Jacques Vanier
National Research Council

SESSION IV
Debra Coleman
Bonneville Power Administration

SESSION V
Dr. Helmut Hellwig
U.S. Air Force/Office of Scientific Research

SESSION VI
Francoise S. Baumont
Observatoire de la Cote D’azur

SESSION VII
Dr. Gernot M.R. Winkler
U.S. Naval Observatory
ARRANGEMENTS

Sheila C. Faulkner
Paul F. Kuhnle
Paul J. Kushmeider

FINANCE COMMITTEE

Dr. William J. Klepczynski
Sheila C. Faulkner

RECEPTIONISTS

The receptionists at the 22nd Annual PTTI meeting were:

Brenda Hicks (U.S. Naval Observatory)
Nicolette Jardine (U.S. Naval Observatory)
Marilyn Levine (Timing Decisions, Incorporated)
Jennifer Stone (Brightline Corporation)
Shirley Swann (Naval Research Laboratory)
Betty Wardrip (Bendix Field Engineering Corporation)
Frances Wright (Naval Research Laboratory)
PTTI Advisory Board Committees

1991

<table>
<thead>
<tr>
<th>Office</th>
<th>Name</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chairman</td>
<td>Mr. S. Clark Wardrip</td>
<td>BFEC</td>
</tr>
<tr>
<td>Vice Chairman</td>
<td>Mr. Martin B. Bloch</td>
<td>FEI</td>
</tr>
<tr>
<td>Finance Committee</td>
<td>Mr. Martin B. Bloch, Chairman</td>
<td>FEI</td>
</tr>
<tr>
<td></td>
<td>Mr. S. Clark Wardrip</td>
<td>BFEC</td>
</tr>
<tr>
<td></td>
<td>Mr. James L. Wright</td>
<td>CSC/RC</td>
</tr>
<tr>
<td></td>
<td>Mr. Gary Smith</td>
<td>KODE</td>
</tr>
<tr>
<td>Exhibits Committee</td>
<td>Mr. Frances Mullen, Chairman</td>
<td>FTS</td>
</tr>
<tr>
<td></td>
<td>Mr. Gary L. Geil</td>
<td>DATUM</td>
</tr>
<tr>
<td></td>
<td>Mr. Roger J. Hesse</td>
<td>DATUM</td>
</tr>
<tr>
<td></td>
<td>Dr. Martin W. Levine</td>
<td>Timing Decisions</td>
</tr>
<tr>
<td></td>
<td>Mr. Jack McNabb</td>
<td>TRAK</td>
</tr>
<tr>
<td></td>
<td>Mr. Don Mitchell</td>
<td>Austron/FTS</td>
</tr>
<tr>
<td></td>
<td>Mr. William J. Riley</td>
<td>EG&G</td>
</tr>
<tr>
<td></td>
<td>Mr. Ron Roloff</td>
<td>Austron</td>
</tr>
<tr>
<td></td>
<td>Mr. Michael R. Tope</td>
<td>Kinemetrics/Truetime</td>
</tr>
<tr>
<td></td>
<td>Dr. Robert F. C. Vessot</td>
<td>SAO</td>
</tr>
<tr>
<td>Guest Speaker Committee</td>
<td>Mr. Robert H. Kern, Chairman</td>
<td>KERNCO</td>
</tr>
<tr>
<td></td>
<td>Professor Carroll O. Alley</td>
<td>University of MD</td>
</tr>
<tr>
<td></td>
<td>Dr. Leonard S. Cutler</td>
<td>HP</td>
</tr>
<tr>
<td></td>
<td>Professor Bradford Parkinson</td>
<td>Stanford University</td>
</tr>
<tr>
<td></td>
<td>Dr. Victor S. Reinhardt</td>
<td>Hughes</td>
</tr>
<tr>
<td></td>
<td>Dr. Samuel R. Stein</td>
<td>Timing Solutions</td>
</tr>
<tr>
<td></td>
<td>Dr. Richard L. Sydnor</td>
<td>JPL</td>
</tr>
<tr>
<td>Reports Committee</td>
<td>Mr. Terry N. Osterdock, Chairman</td>
<td>SNI</td>
</tr>
<tr>
<td></td>
<td>Mr. James M. Cloeren</td>
<td>APL</td>
</tr>
<tr>
<td></td>
<td>Mr. Paul F. Kuhnle</td>
<td>JPL</td>
</tr>
<tr>
<td></td>
<td>Mr. Paul J. Kushmeider</td>
<td>BFEC</td>
</tr>
<tr>
<td></td>
<td>Professor Harry Robinson</td>
<td>Duke University</td>
</tr>
<tr>
<td></td>
<td>Mr. Philip E. Talley</td>
<td>Aerospace</td>
</tr>
</tbody>
</table>

Note: Non-government officers of the PTTI are automatically members of the PTTI Advisory Board for the year(s) that they are in office.
1991 ADVISORY BOARD MEMBERSHIP
Mr. S. Clark Wardrip, Chairman
Bendix Field Engineering Corporation

Professor Carroll O. Alley
University of Maryland
Department of Physics and Astronomy
College Park, Maryland 20742
(301) 454-3405

Dr. James A. Barnes
Austron, Inc.
3300 Mitchell Lane
Boulder, Colorado 80301
(303) 440-7282

Mr. Martin B. Bloch
Frequency Electronics, Inc.
55 Charles Lindbergh Boulevard
Uniondale, New York 11553
(516) 794-4500

Mr. James M. Cloeren
Johns Hopkins University
Applied Physics Laboratory
Johns Hopkins Road
Laurel, Maryland 20707
(301) 953-8821

Dr. Leonard S. Cutler
Hewlett-Packard Company
1651 Page Mill Road
Palo Alto, California 94304
(415) 857-5259

Dr. Henry F. Fliegel
The Aerospace Corporation
Building 120, M5/685
2350E El Segundo Boulevard
El Segundo, California 90245-4691
(213) 336-1710

Mr. Gary L. Geil
DATUM
1363 South State College Boulevard
Anaheim, California 92806
(714) 533-6333

Mr. Roger J. Hesse
DATUM
1363 South State College Boulevard
Anaheim, California 92806
(714) 533-6333

Mr. Robert H. Kern
Kernco, Inc.
28 Harbor Street
Danvers, Massachusetts 01923-0678
(508) 777-1956

Mr. Paul F. Kuhnle
Jet Propulsion Laboratory
4800 Oak Grove Drive
M/S 298
Pasadena, California 90803
(818) 354-2715

Mr. Paul J. Kushmeider
Bendix Field Engineering Corporation
One Bendix Road
Columbia, Maryland 21045
(301) 964-7672

Dr. Martin W. Levine
Timing Decisions, Inc.
P. O. Box 1513
Manchester, Massachusetts 01944
(508) 526-4218

Mr. Jack McNabb
TRAK Microwave
4726 Eisenhower Boulevard
Tampa, Florida 33614-6391
(813) 884-1411

Mr. Donald Mitchell
Austron, Inc.
P. O. Box 14766
Austin, Texas 78761-4766
(512) 251-2313
Mr. Frances Mullen
Frequency and Time Systems, Inc.
34 Tozer Road
Beverly, Massachusetts 01915
(508) 927-8220

Dr. Samuel R. Stein
Timing Solutions Corporation
555 Jack Pine Court
Boulder, Colorado 80304-1711
(303) 443-5152

Mr. Terry N. Osterdock
Stellar Navigation, Inc.
19075 Skyline Boulevard
Los Gatos, California 95030
(408) 354-0733

Dr. Richard L. Sydnor
Jet Propulsion Laboratory
4800 Oak Grove Drive
M/S 298
Pasadena, California 91109
(818) 354-2763

Professor Bradford W. Parkinson
Stanford University
Hamsen Labs, Via Palou
Stanford, California 94305-4085
(408) 395-6521

Professor Harry Robinson
Duke University
Department of Physics
Durham, North Carolina 27706
(919) 684-8226

Mr. Philip E. Talley
The Aerospace Corporation
Building 120, M5-686
2350 East El Segundo Boulevard
El Segundo, California 90245-4619
(213) 336-0484

Mr. William J. Riley
EG&G, Inc.
35 Congress Street
Salem, Massachusetts 01970
(508) 745-3200

Mr. Michael R. Tope
Kinometrics/Truetime
3243 Santa Rosa Avenue
Santa Rosa, California 95407
(707) 528-1230

Mr. Ron C. Roloff
FTS/Austron (DATUM Companies)
1930 Isaac Newton Square
Suite 111
Reston, Virginia 22090
(703) 689-4648

Dr. Robert F. C. Vessot
Smithsonian Astrophysical Observatory
60 Garden Street
Cambridge, Massachusetts 01945
(617) 495-7272

Mr. Gary Smith
KODE
1515 South Manchester Avenue
Anaheim, California 92802-2907
(714) 758-0400

Mr. James L. Wright
P.O. Box 4127, CSR 2230
Eastern Test Range
Patrick Air Force Base, Florida 32925
(407) 494-2014
FOREWORD

These Proceedings contain the papers presented at the Twenty Second Annual Precision Time and Time Interval Applications and Planning Meeting. The meeting was held at the Sheraton Premiere in Tysons Corner, Virginia this year. A good attendance at the meetings and the banquet was an indication of the continuing interest in the field. We had a number of invited papers, some of which are included in this proceedings. A few papers are missing because they were not received in time for publication or were withdrawn from publication by sponsors. The question and answer periods following each talk are included as usual.

This is the second year that we have had a Poster Session. Acceptance of this session was uniformly positive, both by attendees and by presenters. The advantage of this session is the one-on-one interaction between the presenter and the attendee.

The Hydrogen Maser Workshop, organized by Jacques Vnier, and the Environmental Effects Session, organized by Helmut Hellwig, were outstanding successes due to the efforts of these two gentlemen and to the interest in these aspects of the field.

There were 251 registered attendees, very high for an East Coast meeting.

The objective of these meetings is to provide an opportunity for program planners to meet those who are engaged in research and development and to keep abreast of the state-of-the-art and latest technological developments. At the same time, they provide an opportunity for engineers to meet program planners.

The success of these meetings depends on the efforts of the Program Chairman and the individual Session Chairmen and the organization of the entire meeting by the Chairman of the Executive Committee. Without their unstinting labor, such meetings could not be held.
CONTENTS

Keynote Address

The Past, Present and Future of Atomic Time .. 1
Professor Norman F Ramsey, Nobel Prize Laureate

SESSION I
The Future of the Art in Atomic Frequency Standards

Chairman: G. John Dick
Jet Propulsion Laboratory

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Classical Microwave Frequency Standards</td>
<td>9</td>
</tr>
<tr>
<td>Giovanni Busca, Pierre Thomann, Laurent-Guy Bernier,</td>
<td></td>
</tr>
<tr>
<td>Philippe Willemin and Hartmut Schweda, Observatoire de Neuchatel</td>
<td></td>
</tr>
<tr>
<td>The Status of Cesium Beam Frequency Standards</td>
<td>19</td>
</tr>
<tr>
<td>Dr. Leonard S. Cutler, Hewlett-Packard Co.</td>
<td></td>
</tr>
<tr>
<td>State of the Art and Future Directions for the Atomic Hydrogen Maser</td>
<td>29</td>
</tr>
<tr>
<td>Dr. Robert F. C. Vessot, Smithsonian Astrophysical Observatory</td>
<td></td>
</tr>
<tr>
<td>Trapped-Ion Frequency Standards</td>
<td>53</td>
</tr>
<tr>
<td>D. J. Wineland, J. C. Berquist, J. J. Bollinger, W. M. Itano,</td>
<td></td>
</tr>
<tr>
<td>D. J. Heinzen, C. H. Manney, F. L. Moore, M. G. Raizen, and</td>
<td></td>
</tr>
<tr>
<td>C. S. Weimer, National Institute of Standards and Technology</td>
<td></td>
</tr>
</tbody>
</table>

SESSION II
International Applications of PTTI Technology

Chairman: Giovanni Busca
Observatoire Cantonal de Neuchatel

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inter-Satellite Time Transfer: Techniques and Applications</td>
<td>61</td>
</tr>
<tr>
<td>Edoardo Detoma, SEPA S.p.A., Torino, Italy and</td>
<td></td>
</tr>
<tr>
<td>S. Clark Wardrip, Bendix Field Engineering Corporation</td>
<td></td>
</tr>
<tr>
<td>Current GPS/GLONASS Time References and UTC</td>
<td>87</td>
</tr>
<tr>
<td>P. Daly, Department of Electronic and Electrical Engineering, University of Leeds</td>
<td></td>
</tr>
<tr>
<td>USSR National Time Unit Keeping Over Long Interval Using an Ensemble of H-Masers</td>
<td>97</td>
</tr>
<tr>
<td>N. B. Koshelyaevsky and S. B. Pushkin, National Scientific and Research Institute for Physical-Technical and Radiotechnical Measurements VNIIFTRI, Mendeleeevo, Moscow Region, USSR</td>
<td></td>
</tr>
<tr>
<td>Time and Frequency Comparisons in Europe by Means of ECS 5 Geostationary Satellite</td>
<td>117</td>
</tr>
<tr>
<td>F. Cordara and V. Petitti, Istituto Elettrotecnico</td>
<td></td>
</tr>
<tr>
<td>Nazionale Galileo Ferraris, Torino, Italy and A. Cenci, M. Fermi,</td>
<td></td>
</tr>
<tr>
<td>and C. Sciarretta, Telespazio S.p.A., Roma, Italy</td>
<td></td>
</tr>
</tbody>
</table>

xiii
A Highly Stable Crystal Oscillator Applied to Geodetic VLBI Experiment
Hitoshi Kiuchi and Jun Amagai, Communications Research Laboratory, Japan

GPS Time Transfer with Implementation of Selective Availability

Time Scale Algorithm: Definition of Ensemble Time and Possible Uses of the Kalman Filter
P. Tavella, Istituto Elettrotecnico Nazionale Galileo Ferraris and C. Thomas, Bureau International des Poids et Mesures

Ultra-stable Hg+ Trapped Ion Frequency Standard
J. D. Prestage, G. J. Dick, and L. Maleki, California Institute of Technology, Jet Propulsion Laboratory

Design and Industrial Production of Frequency Standards in the USSR
Nikolaj A. Demidov and Adolf A. Uljanov, “QUARTZ” Research and Production Association, USSR

SESSION IIIA
PTTI Technology for the Nineties
Poster Session
Chairman: Phillip F. Talley
The Aerospace Corporation

Long-Term Microwave Power Drift of a Cesium Frequency Standard and its Effect on Output Frequency
W. A. Johnson, S. K. Karuza, and F. J. Voit, The Aerospace Corporation

Rubidium Atomic Frequency Standards for GPS Block IIR
W. J. Riley, EG&G Frequency Products, Inc., Rubidium Frequency Standards

Precise Frequency Calibration Using Television Video Carriers
Edward E. Burkhardt, Burkhardt Monitoring Service

Geodetic Positioning of the Aerospace Electronics Research Lab (ERL) Osborne Time Transfer Receiver (TTR) Using the GPS NAVSTAR Block I Satellites
Anthony Liu, The Aerospace Corporation
Precise Measurement Method for Ionospheric Total Electron Content Using Signals from GPS Satellites
Michito Imae, Hitoshi Kiuchi, Akihiro Kaneko and Chihiro Miki,
Kashima Space Research Center, Communications Research Laboratory

Application of High Stability Oscillators to Radio Science Experiments Using Deep Space Probes
E. R. Kursinski, Jet Propulsion Laboratory California Institute of Technology

Zero-Crossing Detector with Sub-microsecond Jitter and Crosstalk
G. J. Dick, D. F. Kuhnle, and R. L. Sydnor,
Jet Propulsion Laboratory, California Institute of Technology

Hydrogen Masers with Cavity Frequency Switching Servos
H. E. Peters, H. B. Owings, and P. A. Koppang,
Sigma Tau Corporation

Frequency Shifts in a Rubidium Frequency Standard Due to Coupling to Another Standard
B. Jaduszliwer, R. A. Cook, and R. P. Frueholz,
The Aerospace Corporation

Effect of Thermal Cycling on Stress in Metallic Films on Ceramic Substrates
Edward M. Mattison and Robert F. C. Vessot,
Smithsonian Astrophysical Observatory

Sensitivity to the External Temperature of Some GPS Time Receivers
W. Lewandowski, Bureau International des Poids et Mesures and R. Tourde, Observatoire de Paris

GPS Block 2R Time Standard Assembly (TSA) Architecture
Tony Baker, ITT Aerospace Communications

Interim Results from the Characterization Testing of the Engineering Development (EDM) Rubidium Clocks for Satellite Applications
E. Powers and F. Danzy
Naval Research Laboratory

On the Length of the Drift Region in the Ramsey Cavity
P. Thomann, Observatoire Cantonal de Neuchatel

Time and Frequency Measuring Metrological Equipment in the USSR
Adolf A. Uljanov, Director-General of Gorky NPO “QUARTZ”

Two-Way Time Transfer Modem
I. J. Galysh, P. Landis,
Naval Research Laboratory
SESSION IIIB
Special Hydrogen Maser Workshop
Chairman: Jacques Vanier, Moderator
National Research Council of Canada

Report on the Session ... 349
D. Morris, National Research Council

SESSION IV
PTTI Applications in Communications and Power Transmission
Chairman: Debra Coleman
Bonneville Power Administration

Delivery and Application of Precise Timing for a
Traveling Wave Powerline Fault Locator System 355
Michael A. Street,
Bonneville Power Administration

Precise Synchronization of Phasor Measurements
in Electric Power Systems ... 361
Arun G. Phadke, Virginia Polytechnic Institute and State University

Time Concurrency/Phase-Time Synchronization in
Digital Communications Networks ... 367
M. Kihara and A. Ímaoka, NTT Transmission Systems Laboratories

The Cable and Wireless Approach to
Network Synchronization ... 375
Robert D. Calvert, Cable and Wireless

International Two-way Satellite Time Transfers Using
Intelsat Space Segment and Small Earth Stations 383
L. B. Veenstra, International Telecommunications
Satellite Organization

The BBC Network Radio Time and Frequency Standard
and its Role in the Provision of the Greenwich Time Signal 401
Jim McIlroy, British Broadcasting Corporation

Synchronizing Computer Clocks Using a Local Area Network 409
Judah Levine, National Institute of Standards and Technology

SESSION V
Physics of Environmental Sensitivity in Frequency Standards
Chairman: Helmut Hellwig
United States Air Force

Physical Origin of the Frequency Shifts in Cesium
Beam Frequency Standards: Related Environmental Sensitivity 419
C. Audoin, N. Dimarcq, V. Giordano and J. Viennet, Laboratoire de Horloge
Atomique, Unite Propre de Recherche du CNRS, associee a l'Universite Paris-Sud
The Physics of the Environmental Sensitivity of Rubidium .. 441
Gas Cell Atomic Frequency Standards ... 441
W. J. Riley, EG&G Frequency Products
Rubidium Frequency Standards

Physics of Systematic Frequency Variations in Hydrogen Masers 453
Edward M. Mattison, Smithsonian Astrophysical Observatory

Environmental Sensitivities of Quartz Crystal Oscillators 465
Fred L. Walls, Time and Frequency Division, National Institute of Standards and Technology

Local Oscillator Induced Degradation of Medium-Term Stability in Passive Atomic Frequency Standards .. 487
G. J. Dick, J. D. Prestage, C. A. Greenhall and L. Maleki, California Institute of Technology, Jet Propulsion Laboratory

Performance of Soviet and U. S. Hydrogen Masers ... 509
A. A. Uljanov and N. A. Demidov, "Quartz" Research and Production Association
E. M. Mattison and R. F. C. Vessot, Smithsonian Astrophysical Observatory
D. W. Allan, National Institute of Standards and Technology
G. M. R. Winkler, U. S. Naval Observatory

SESSION VI
Operational Synchronization and Syntonization
Chairman: Francoise Baumont
Observatoire de la Cote d'Azur

The National- and International-Wide Prospects of Future Improvements in Position Location and Time Synchronization .. 525
Y. G. Gouzhva, B. N. Balyasnikov, V. V. Korniyenko, I. G. Pushkina and V. S. Shebshayevich, Leningrad Scientific Research Radiotechnical Institute
V. I. Denisov, "Interradionavigation"
A. P. Reutov, USSR Ministry of Radio Industry

GPS Composite Clock Software Performance ... 529
A. L. Satin, W. A. Feess, H. F. Fiiegel, and C. H. Yinger,
The Aerospace Corporation

The Use of Precise Ephemerides, Ionospheric Data and Corrected Antenna Coordinates in a Long-Distance GPS Time Transfer ... 547
W. Lewandowski, C. Petit and C. Thomas, Bureau International des Poids et Mesures and M. Weiss, Time and Frequency Division, National Institute of Standards and Technology

GPS/Loran-C Interoperability for Time and Frequency Applications—A Survey of the Times of Arrival of Loran-C Transmissions via GPS Common Mode/Common View Satellite Observations 559
B. Penrod, R. Funderburk, Peter Dana—Consultant Austron, Inc.
LASSO, Two-way and GPS Time Comparisons:
a (Very) Preliminary Status Report 575
 C. Veillet, D. Feraudy, J. M. Torre, J. F. Mangin (OCA)
 P. Grudler, F. Baumont (OCA)
 J. Gaignebet, J. L. Hatat (OCA)
 W. Hanson, A. Clements, J. Jesperson, M. Lombardi (NIST)
 D. Kirchner (TUG)
 G. Kirchner, H. Ressler, and S. S. Fassi (Space Res. Inst. Graz)
 W. J. Klepczynski, P. J. Wheeler, W. Powell, A. Davis (USNO)
 M. Granveaud, P. Uhrich (LPTF)

Recent Developments of Loran-C in Europe 583
 S. Leschiutta and E. Rubiola, Politecnico di Torino

On the Line Q Degradation of Hydrogen Masers 599
 L. G. Bernier, G. Busca, H. Schweda, Observatoire de Neuchatel, Switzerland
KEYNOTE ADDRESS
THE PAST, PRESENT AND FUTURE OF ATOMIC TIME

Norman F. Ramsey
Harvard University
Cambridge, MA 02138, USA

Abstract

The early history of atomic time and frequency standards is reviewed. The most accurate and stable present standards are described. Prospective future improvements are discussed, particularly those with laser cooling and with trapped ions and atoms.

THE PAST

The first successful magnetic resonance experiments were those of Rabi and his associates\(^1,2\) with molecular beams in 1938. The initial experiments measured the interactions of nuclear magnetic moments with external magnetic fields, but radiofrequency spectra were soon observed that depended on internal interactions within molecules\(^2\) or atoms\(^3,4\). Some of the radiofrequency spectra lines were almost independent of external conditions\(^5\) and could therefore be used as the highly stable periodic component of an atomic clock\(^6,7\). Rabi, Zacharias and Ramsey at Columbia discussed the possibility of atomic clocks at Columbia as early as 1939 and Rabi discussed these ideas publicly in his 1945 Richtmeyer lecture to the American Physical Society; the first published description of atomic clocks was the New York Times article based on this lecture.

In 1949 Ramsey\(^8,9\) invented the separated oscillatory field method which provided narrower resonances, eliminated first order Doppler shifts and was usable at much higher frequencies. In 1952 Kusch, Lyons Sherwood and others\(^10\) did some initial work on a separated oscillatory field atomic cesium clock, but the work was soon discontinued. In 1954 Zacharias\(^11\) stimulated renewed interest in an atomic cesium clock and began\(^12\) the development of a commercial atomic cesium clock. The first atomic beam apparatus extensively used as an actual frequency standard was constructed in 1955 by Essen and Parry\(^13\). From 1956 on atomic frequency standards developed rapidly with major contributions coming from a number of laboratories in many different countries\(^5,14\). Stabilities and accuracies of about \(10^{-13}\) have been achieved with atomic cesium clocks\(^14\) and the second, by international agreement, has been defined as the duration of 9,192,631,770 cesium periods.

Concurrent with the advances in atomic beam clocks, a number of other atomic and molecular clocks were developed\(^7\). Microwave absorption devices using molecular resonances, such as the NH\(_3\) inversion transition, were developed by Townes and others\(^7\). Later Townes\(^15\) discovered the maser principle and developed the ammonia maser which operated well but lacked the stability to be competitive.

The combination of Kastler's optical pumping technique\(^16\) with Dicke's use of buffer gases\(^17\) provided strong oscillations free from first order Doppler effects, so optically pumped rubidium can be used as
a frequency standard. Although other atomic clocks have greater accuracy and stability, rubidium clocks are frequently used since they are much lighter and less expensive.

The atomic hydrogen maser was invented by Kleppner and Ramsey18 and a number of scientists7 contributed to its improvement. In the hydrogen maser, atoms in the higher hyperfine state of atomic hydrogen are stored in a teflon coated bottle inside a tuned microwave cavity where by stimulated emission they emit coherent highly stable microwave radiation. The stability of a hydrogen maser can be better than 10^{-15} over several hours.

Townes and Schawlow19 first pointed out the possibility of applying the maser principles at infrared and light frequencies and the first successful laser was made by Maiman20. Since then laser developments have occurred at a rapid pace with dramatic improvements in frequency range, power and stability. Major advances came from the suppression of first order Doppler shifts by such techniques as two photon absorption spectroscopy7 and from the development of successive chains of laser frequencies so that the laser frequencies could be calibrated in terms of cesium.

In recent years a number of major new techniques for trapping and cooling ions have been developed including cooling by collisions with inert gases such as He, laser cooling and sympathetic cooling. Likewise techniques for trapping and cooling neutral atoms have developed at a rapid pace including slowing of atoms with a laser beam, laser trapping of atoms, laser cooling and optical molasses. Since most of these developments hold great promise for the future but are not yet incorporated into current clocks, they will be discussed later in the section on the future.

THE PRESENT

At present different atomic clocks can be chosen to fit the need. When high stability is not required, optically pumped rubidium cells can be chosen for their low cost, small size and light weight; such cells are stable to 10^{-11} over a one month period and more stable for shorter periods. When greater accuracy and stability is required, cesium beam tubes are usually used; they are accurate to better than 10^{-13} over extended time periods. For the highest stability requirements, as in long baseline radio astronomy and navigation in outer space, hydrogen masers are often required; they are stable to better than 10^{-15} over several hours. When optical frequencies need to be measured lasers must be used even though they are not yet absolute standards.

THE FUTURE

Niels Bohr once said, "It is always difficult to make predictions, especially predictions about the future". Long range predictions in a rapidly developing field like that of accurate timing are particularly unreliable because unanticipated new ideas usually occur and greatly change the future. Short term predictions are usually much better because they depend mostly on developments that have already partially occurred. I shall devote most of this section to describing current plans and recent research developments which have particularly promising implications for the future and which are the essential ingredients to rational predictions of both the near and distant futures.

Many improvements are being developed or are in prospect for the atomic clocks currently used. For example, the simple and low cost optically pumped atomic oscillators are being improved by the use of different atoms, by suitable wall coatings which permit the omission of buffer gases7 and by combining optical pumping techniques with those of atom trapping and cooling.
A number of improvements can be made on the next generation of accurate atomic beam frequency standards21--24. Instead of state selection by deflection with inhomogeneous magnetic fields, the atoms may be optically pumped to the desired state. The ends of the separated oscillatory fields cavities can be designed to minimize distributed cavity phase shift23 and an axial magnetic field may be chosen to minimize Rabi and Ramsey pulling23. Beam reversal can be used to evaluate any remaining phase shift between the two oscillatory fields and the excitation can be with counter-propagating waves21--24. Although cesium is the atom currently most frequently used in atomic beam frequency standards, other atoms such as Mg are being investigated. Higher excited states may also be used to obtain atomic beam frequency standards at higher frequencies. The atoms in an atomic beam may be laser cooled to reduce the second order Doppler shift. Many of the laser cooling and trapping experiments discussed below are combined laser and atomic beam experiments. Uncertainties in the second order Doppler shift can also be reduced by velocity selection of the beam, but at the cost of a serious reduction in beam intensity.

Many atomic clocks, such as cesium beam tubes, have much better long term accuracy than short term stability in which case the shorter term stability of the clock can be greatly improved by suitably coupling it to a fly wheel oscillator with high short term stability. Crystal oscillators, for example, can be used for the fly wheel oscillator. Very high Q cavities are good for this purpose and superconducting cavities are particularly promising since they are highly stable. Circuits with either optical or electrical feedback from a high Q cavity markedly diminish the noise and increase the short term stability. Consideration is even given to the possibility of using a hydrogen maser as a fly wheel oscillator.

Possible improvements for the hydrogen maser25 include more stable tuned cavities, electronic cavity tuning, operation at low temperatures, operation in a passive mode and new confinement surfaces, such as superfluid 4He or Fomblin oil. Superfluid helium surfaces have the advantage that they are reproducible since the superfluid helium covers all impurities and does not change its character with time.

Infra--red and optical frequency standards can be improved by the use of narrower lines, by the adaptation to optical frequencies of the separated oscillatory field methods, by improved frequency chains to compare different frequency standards and by the various ion and atom trapping and cooling techniques discussed below.

Dehmelt26,27 first used electromagnetic ion traps in radiofrequency resonance studies. Penning traps overcome the limitations of the Earnshaw theorem by confining the ions in one direction with an inhomogeneous electric field and in the two other orthogonal directions with a uniform magnetic field. Alternatively, suitable inhomogeneous electric fields can provide focusing in all three directions in Paul or radiofrequency traps which alternatively provide focusing and defocusing in each direction but with an average focusing in all directions. Ion traps have the advantage that the observed transition frequencies are approximately independent of the trapping fields. Originally the trapped ions had high kinetic energy (approximately 1 eV) and excessively high second order Doppler shifts. However, Prestage, Dick and Maleki28 have used a hybrid rf/dc linear ion trap which permits storage of large numbers of ions with reduced susceptibility to the second order Doppler effect caused by the rf confining fields. Alternatively, Cutler29, Dehmelt30 and others30,31 have obtained promising frequency standards by cooling trapped 199Hg ions to 300K by collisions with low pressure helium gas.

Laser cooling, as proposed by Wineland and Dehmelt27,32 and by Hansch and Schawlow33, can go to even much lower temperatures by shining intense laser light at the frequency of an allowed optical transition onto a trapped atom or ion slightly below the resonance frequency so the light pressure by the first order Doppler shift is greatest on the ion when it is approaching the light. Dehmelt34
and Wineland and others have used this technique to cool trapped ions to temperatures of a few micro Kelvin where the second order Doppler shifts are negligible. Laser cooling of ions has been effective with both Penning and electric quadrupole rf traps. If the cooling laser beams act directly on the stored ions being used for time keeping, they must be turned off when the clock frequency is being measured. However, this can be avoided by the process of “sympathetic cooling” in which two different ions are trapped with one being the clock atom while the other is laser cooled; the two kinds of atoms interact sufficiently in the trap for the clock ions to be “sympathetically” cooled by the other ions. Trapped ions have been cooled to the lowest vibrational state of the trap. Laser cooling of trapped ions is a very promising technique for stable clocks with the principal limitation being the low ion density required to avoid space charge effects and the low density in turn reduces the signal to noise ratio.

The extreme limit for low density of ion traps are those with only a single ion. In such experiments the expected low signal to noise ratio can be improved by the technique of “shelving”. In shelving, say with say 138Ba, the ion is excited from the $6^2 S_{1/2}$ ground state to the $5^2 D_{5/2}$ state with two intense laser beams and the transitions between the $5^2 D_{5/2}$ state and the $5^2 D_{3/2}$ state are induced at the clock frequency. When the ion is “shelved” in the $5^2 D_{3/2}$ state the laser induced transitions stop until the ion leaves that state. In this fashion each clock induced transition can affect 10^6 observable fluorescent photons which greatly improves the signal to noise ratio.

In 1985, Phillips and his associates used laser cooling of a focused atomic beam to slow electrically uncharged atoms and even reverse their velocity. Since the Doppler shift changes as the atom slows down, either the atomic optical frequency or the laser frequency must change for the slowing to continue. Phillips did so by having the atoms pass through a region where the magnetic field gradually changed as the atom moved along its path. Alternatively, Hall, Wieman and others have changed or “chirped” the laser frequency as the atom has slowed down. The success of atom cooling permits atoms to be stored in weak traps so there has been a virtual explosion of new ideas and developments in laser cooling during recent years. Laser forces on neutral atoms can arise either from the gradients of the laser electric field interacting with the induced dipole moment of the atom (gradient or dipole force traps) or by the transfer of momentum in the absorption and emission of radiation (spontaneous radiation or scattering force traps), with the gradient traps being intrinsically weaker. When slow atoms are introduced into a region with oppositely directed laser beams along three orthogonal directions at frequencies slightly below the resonance frequency, the atoms will be laser cooled in whatever direction they move. Although such “optical molasses” does not provide a stable trap, Pritchard, Wieman, Cohen-Tannoudji and others have combined optical molasses with either gradient or radiation trapping to trap atoms at about 100 K.

Phillips and his associates in 1988 made the startling experimental discovery that Na atoms could be cooled to lower velocities than had previously been considered to be the theoretical cooling limit. It was thought that there was a theoretical limit, often called the Doppler limit, below which the atoms could not be cooled by laser cooling. This theoretical limit quite reasonably occurs when $k_B T/2 = \hbar \Gamma/4$ where Γ is the spontaneous emission rate from the excited atomic state and k_B is the Boltzmann constant. For Na, this theoretical temperature limit $T = 240 \mu K$. In contrast, Phillips and associates found experimentally a cooling to 40 μK. Another theoretical limit to cooling was thought to be the recoil limit which occurs when the recoil energy $(\hbar k)^2/2M$ of the atom of mass M emits a photon of momentum $\hbar k$. Cooling below the Doppler limit has been explained by Cohen-Tannoudji, Dribbard, Solomon, Chu and others as due to polarization gradient cooling in a multilevel system and the Sisyphus effect according to which a moving atom is mostly climbing a potential hill of a light shifted doublet ground state sublevel before being optically pumped to the other sublevel. With
polarization gradient cooling Cs atoms have been cooled to 2.5 μK. Aspect, Cohen-Tannoudji and their associates\(^4,\text{45}\) have also used a velocity selective process based on coherent trapping of atomic populations into a nonabsorbing coherent superposition of states to achieve transverse cooling of \(^4\)He atoms in the triplet metastable state to well below the usual 23 μK one dimensional Doppler cooling limit and the 4 μK recoil limit down to about 2K.

The principal disadvantage of an atom trap is that the strong laser fields that provide the trapping also distort the energy levels and resonance frequencies of the atoms. Usually this makes it necessary to turn the trapping lasers off while the resonance is being studied with a consequent reduction in storage time. One possibility for increasing the effective storage time is to give the atoms a small vertical component of velocity so that they rise up and then fall under gravity, in some cases passing through two coherent oscillatory fields\(^8\) on the way up and down, as recently done successfully by Chu\(^46\) and his associates with microwaves and as planned by others at laser frequencies. In the first successful fountain experiments the atoms were somewhat heated by giving them the small vertical velocity, but in the future the heating can probably be avoided by slightly shifting the frequency of the vertical cooling lasers so that the optical molasses will move vertically\(^42,\text{45,46}\). Chu\(^46\) also plans to increase the beam intensity for his experiments with an atom funnel based on dissipative optics. As an alternative to the fountain, Wieman\(^42\) has suggested that the atoms can now be cooled to such low temperatures that they can be stored in a magnetic trap so weak that it does not significantly affect the spectrum.

With the impressive recent developments just discussed it is apparent that there are many possibilities both for future improvements of the currently used time and frequency standards and for totally new standards based on trapped ions or atoms. The possibilities are so numerous that it is impossible to predict which ones will be best. But with such promising new techniques already available and with the prospect for further new ideas, the next few years in the field of atomic time should be exciting and productive.

REFERENCES

